Training-Free Constrained Generation With Stable Diffusion Models
- URL: http://arxiv.org/abs/2502.05625v1
- Date: Sat, 08 Feb 2025 16:11:17 GMT
- Title: Training-Free Constrained Generation With Stable Diffusion Models
- Authors: Stefano Zampini, Jacob Christopher, Luca Oneto, Davide Anguita, Ferdinando Fioretto,
- Abstract summary: We propose a novel approach to integrate stable diffusion models with constrained optimization frameworks.
We demonstrate the effectiveness of this approach through material science experiments requiring adherence to precise morphometric properties.
- Score: 45.138721047543214
- License:
- Abstract: Stable diffusion models represent the state-of-the-art in data synthesis across diverse domains and hold transformative potential for applications in science and engineering, e.g., by facilitating the discovery of novel solutions and simulating systems that are computationally intractable to model explicitly. However, their current utility in these fields is severely limited by an inability to enforce strict adherence to physical laws and domain-specific constraints. Without this grounding, the deployment of such models in critical applications, ranging from material science to safety-critical systems, remains impractical. This paper addresses this fundamental limitation by proposing a novel approach to integrate stable diffusion models with constrained optimization frameworks, enabling them to generate outputs that satisfy stringent physical and functional requirements. We demonstrate the effectiveness of this approach through material science experiments requiring adherence to precise morphometric properties, inverse design problems involving the generation of stress-strain responses using video generation with a simulator in the loop, and safety settings where outputs must avoid copyright infringement.
Related papers
- Efficient Fine-Tuning and Concept Suppression for Pruned Diffusion Models [93.76814568163353]
We propose a novel bilevel optimization framework for pruned diffusion models.
This framework consolidates the fine-tuning and unlearning processes into a unified phase.
It is compatible with various pruning and concept unlearning methods.
arXiv Detail & Related papers (2024-12-19T19:13:18Z) - Hard Constraint Guided Flow Matching for Gradient-Free Generation of PDE Solutions [41.558608119074755]
We introduce a novel framework for adapting pre-trained, unconstrained flow-matching models to satisfy constraints exactly in a zero-shot manner without requiring expensive computations or fine-tuning.
Our framework, ECI sampling, alternates between extrapolation (E), correction (C) and Generative (I) stages to ensure accurate integration of constraint information while preserving the validity of the generation.
We demonstrate the effectiveness of our approach across various PDE systems, showing that ECI-guided generation strictly adheres to physical constraints and accurately captures complex distribution shifts induced by these constraints.
arXiv Detail & Related papers (2024-12-02T18:36:26Z) - Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
Generalized Additive Models (GAMs) can capture non-linear relationships between variables and targets, but they cannot capture intricate feature interactions.
We propose Shape Expressions Arithmetic ( SHAREs) that fuses GAM's flexible shape functions with the complex feature interactions found in mathematical expressions.
We also design a set of rules for constructing SHAREs that guarantee transparency of the found expressions beyond the standard constraints.
arXiv Detail & Related papers (2024-04-15T13:44:01Z) - Constrained Synthesis with Projected Diffusion Models [47.56192362295252]
This paper introduces an approach to generative diffusion processes the ability to satisfy and certify compliance with constraints and physical principles.
The proposed method recast the traditional process of generative diffusion as a constrained distribution problem to ensure adherence to constraints.
arXiv Detail & Related papers (2024-02-05T22:18:16Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
This work extends the reach of generative models into physical problem domains.
We present an efficient approach to promote consistency with the underlying PDE.
We showcase the potential and versatility of score-based generative models in various physics tasks.
arXiv Detail & Related papers (2023-12-16T19:56:10Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Extreme sparsification of physics-augmented neural networks for
interpretable model discovery in mechanics [0.0]
We propose to train regularized physics-augmented neural network-based models utilizing a smoothed version of $L0$-regularization.
We show that the method can reliably obtain interpretable and trustworthy models for compressible and incompressible thermodynamicity, yield functions, and hardening models for elastoplasticity.
arXiv Detail & Related papers (2023-10-05T16:28:58Z) - Neural Abstractions [72.42530499990028]
We present a novel method for the safety verification of nonlinear dynamical models that uses neural networks to represent abstractions of their dynamics.
We demonstrate that our approach performs comparably to the mature tool Flow* on existing benchmark nonlinear models.
arXiv Detail & Related papers (2023-01-27T12:38:09Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
We propose a learning framework to extract, from molecular dynamics data, an optimal Linear Peridynamic Solid model.
We provide sufficient well-posedness conditions for discretized LPS models with sign-changing influence functions.
This framework guarantees that the resulting model is mathematically well-posed, physically consistent, and that it generalizes well to settings that are different from the ones used during training.
arXiv Detail & Related papers (2021-08-04T07:07:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.