論文の概要: GWRF: A Generalizable Wireless Radiance Field for Wireless Signal Propagation Modeling
- arxiv url: http://arxiv.org/abs/2502.05708v1
- Date: Sat, 08 Feb 2025 22:03:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:29:38.723620
- Title: GWRF: A Generalizable Wireless Radiance Field for Wireless Signal Propagation Modeling
- Title(参考訳): GWRF:無線信号伝搬モデリングのための一般化可能な無線放射場
- Authors: Kang Yang, Yuning Chen, Wan Du,
- Abstract要約: Generalizable Wireless Radiance Fields (GWRF) は、任意の3D送信機と受信機の位置で無線信号の伝搬をモデル化するためのフレームワークである。
まず、ジオメトリ対応トランスフォーマーエンコーダを用いた無線シーン表現モジュールは、地理的に近接する送信機からの情報を組み込んで、一般化可能な無線放射場を学習する。
第2に、このフィールド上でニューラル駆動のレイトレーシングアルゴリズムが動作し、受信機での信号受信を自動的に計算する。
- 参考スコア(独自算出の注目度): 5.744904421002954
- License:
- Abstract: We present Generalizable Wireless Radiance Fields (GWRF), a framework for modeling wireless signal propagation at arbitrary 3D transmitter and receiver positions. Unlike previous methods that adapt vanilla Neural Radiance Fields (NeRF) from the optical to the wireless signal domain, requiring extensive per-scene training, GWRF generalizes effectively across scenes. First, a geometry-aware Transformer encoder-based wireless scene representation module incorporates information from geographically proximate transmitters to learn a generalizable wireless radiance field. Second, a neural-driven ray tracing algorithm operates on this field to automatically compute signal reception at the receiver. Experimental results demonstrate that GWRF outperforms existing methods on single scenes and achieves state-of-the-art performance on unseen scenes.
- Abstract(参考訳): 本稿では、任意の3D送信機と受信機位置で無線信号の伝搬をモデル化するフレームワークであるGeneralizable Wireless Radiance Fields (GWRF)を提案する。
光信号領域から無線信号領域にバニラ神経放射場(NeRF)を適応させる従来の手法とは異なり、GWRFはシーン全体にわたって効果的に一般化する。
まず、ジオメトリ対応トランスフォーマーエンコーダを用いた無線シーン表現モジュールは、地理的に近接する送信機からの情報を組み込んで、一般化可能な無線放射場を学習する。
第2に、このフィールド上でニューラル駆動のレイトレーシングアルゴリズムが動作し、受信機での信号受信を自動的に計算する。
実験により,GWRFは単一シーンにおける既存手法よりも優れており,未知シーンにおける最先端性能を実現していることが示された。
関連論文リスト
- RayProNet: A Neural Point Field Framework for Radio Propagation Modeling in 3D Environments [1.7074276434401858]
本稿では,無線チャネルモデリングのための機械学習を利用した新しい手法を提案する。
主な材料は、ポイントクラウドベースのニューラルネットワークと、光プローブを備えた球高調波エンコーダである。
論文 参考訳(メタデータ) (2024-06-04T01:06:41Z) - Enabling Visual Recognition at Radio Frequency [13.399148413043411]
PanoRadarは、RF分解能をLiDARに近づける新しいRFイメージングシステムである。
結果は、初めて、無線周波数での様々な視覚的認識タスクを可能にします。
以上の結果から,パノラダルの12棟の建物における堅牢な性能が示された。
論文 参考訳(メタデータ) (2024-05-29T20:52:59Z) - NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
最近の研究は、遠方の環境照明の詳細な明細な外観を描画するNeRFの能力を改善しているが、近い内容の一貫した反射を合成することはできない。
我々はこれらの問題をレイトレーシングに基づくアプローチで解決する。
このモデルでは、それぞれのカメラ線に沿った点における視界依存放射率を求めるために高価なニューラルネットワークをクエリする代わりに、これらの点から光を流し、NeRF表現を通して特徴ベクトルを描画します。
論文 参考訳(メタデータ) (2024-05-23T17:59:57Z) - Mesh2NeRF: Direct Mesh Supervision for Neural Radiance Field Representation and Generation [51.346733271166926]
Mesh2NeRFは、3次元生成タスクのためのテクスチャメッシュから地上構造放射場を導出するアプローチである。
各種タスクにおけるMesh2NeRFの有効性を検証する。
論文 参考訳(メタデータ) (2024-03-28T11:22:53Z) - CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs [65.80187860906115]
スパース入力によるNeRFの性能向上のための新しい手法を提案する。
まず, サンプル線が, 3次元空間内の特定のボクセルと交差することを保証するために, ボクセルを用いた放射線サンプリング戦略を採用する。
次に、ボクセル内の追加点をランダムにサンプリングし、トランスフォーマーを適用して各線上の他の点の特性を推測し、ボリュームレンダリングに組み込む。
論文 参考訳(メタデータ) (2024-03-25T15:56:17Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
本稿では,信号表現に一般放射状基底を用いる新しいタイプのニューラルネットワークを提案する。
提案手法は, 空間適応性が高く, ターゲット信号により密着可能な, フレキシブルなカーネル位置と形状を持つ一般ラジアルベース上に構築する。
ニューラルラジアンス場再構成に適用した場合,本手法はモデルサイズが小さく,訓練速度が同等である最先端のレンダリング品質を実現する。
論文 参考訳(メタデータ) (2023-09-27T06:32:05Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - ChaRRNets: Channel Robust Representation Networks for RF Fingerprinting [0.0]
RFフィンガープリントのための複雑値畳み込みニューラルネットワーク(CNN)を提案する。
我々は,深層学習(dl)技術を用いた無線iotデバイスの指紋認証の問題に注目する。
論文 参考訳(メタデータ) (2021-05-08T03:03:21Z) - Deep Neural Network Feature Designs for RF Data-Driven Wireless Device
Classification [9.05607520128194]
本稿では、RF通信信号の異なる構造と、送信機ハードウェア障害に起因するスペクトル放射を利用する新しい特徴設計手法を提案する。
提案するDNNの特徴は,拡張性,精度,シグネチャ・アンチ・クローニング,環境摂動に対する非感受性の観点から,分類の堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2021-03-02T20:19:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。