論文の概要: Filter, Obstruct and Dilute: Defending Against Backdoor Attacks on Semi-Supervised Learning
- arxiv url: http://arxiv.org/abs/2502.05755v1
- Date: Sun, 09 Feb 2025 03:22:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:30:45.098545
- Title: Filter, Obstruct and Dilute: Defending Against Backdoor Attacks on Semi-Supervised Learning
- Title(参考訳): フィルター, 障害物, 希薄性: 半監督学習におけるバックドア攻撃に対する防御
- Authors: Xinrui Wang, Chuanxing Geng, Wenhai Wan, Shao-yuan Li, Songcan Chen,
- Abstract要約: 近年の研究では、半教師付き学習(SSL)がバックドア攻撃に影響を及ぼすデータに対して脆弱であることが確認されている。
この作業はSSLをこのようなリスクから保護することを目的としており、この領域で知られている数少ない取り組みの1つとしてマークされている。
- 参考スコア(独自算出の注目度): 29.65600202138321
- License:
- Abstract: Recent studies have verified that semi-supervised learning (SSL) is vulnerable to data poisoning backdoor attacks. Even a tiny fraction of contaminated training data is sufficient for adversaries to manipulate up to 90\% of the test outputs in existing SSL methods. Given the emerging threat of backdoor attacks designed for SSL, this work aims to protect SSL against such risks, marking it as one of the few known efforts in this area. Specifically, we begin by identifying that the spurious correlations between the backdoor triggers and the target class implanted by adversaries are the primary cause of manipulated model predictions during the test phase. To disrupt these correlations, we utilize three key techniques: Gaussian Filter, complementary learning and trigger mix-up, which collectively filter, obstruct and dilute the influence of backdoor attacks in both data pre-processing and feature learning. Experimental results demonstrate that our proposed method, Backdoor Invalidator (BI), significantly reduces the average attack success rate from 84.7\% to 1.8\% across different state-of-the-art backdoor attacks. It is also worth mentioning that BI does not sacrifice accuracy on clean data and is supported by a theoretical guarantee of its generalization capability.
- Abstract(参考訳): 近年の研究では、半教師付き学習(SSL)がバックドア攻撃に影響を及ぼすデータに対して脆弱であることが確認されている。
汚染されたトレーニングデータのごく一部であっても、既存のSSLメソッドでテスト出力の90%を敵が操作するのに十分である。
SSL用に設計されたバックドア攻撃の脅威が浮上していることを考えると、この作業はSSLをそのようなリスクから保護することを目的としており、この領域で知られている数少ない取り組みの1つである。
具体的には、バックドアトリガーと敵が埋め込んだターゲットクラスとの急激な相関関係が、テストフェーズにおける操作されたモデル予測の主要な原因であることを示すことから始める。
これらの相関を乱すために、ガウスフィルタ、補完学習、トリガーミックスアップという3つの主要な手法を用いて、データ前処理と特徴学習の両方においてバックドア攻撃の影響を総括的にフィルタリングし、妨害し、希釈する。
実験結果から,提案手法であるBaddoor Invalidator (BI) は,最先端のバックドア攻撃において,平均攻撃成功率を84.7\%から1.8\%に著しく低下させることが示された。
BIはクリーンなデータに対する正確さを犠牲にせず、その一般化能力の理論的保証に支えられていることも特筆に値する。
関連論文リスト
- Long-Tailed Backdoor Attack Using Dynamic Data Augmentation Operations [50.1394620328318]
既存のバックドア攻撃は主にバランスの取れたデータセットに焦点を当てている。
動的データ拡張操作(D$2$AO)という効果的なバックドア攻撃を提案する。
本手法は,クリーンな精度を維持しつつ,最先端の攻撃性能を実現することができる。
論文 参考訳(メタデータ) (2024-10-16T18:44:22Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Defending Against Repetitive Backdoor Attacks on Semi-supervised Learning through Lens of Rate-Distortion-Perception Trade-off [20.713624299599722]
半教師付き学習(SSL)は、わずかなラベル付きデータで顕著なパフォーマンスを達成した。
信頼できないデータの大規模なプールは、データ中毒に極めて脆弱であり、バックドア攻撃につながる可能性がある。
トリガーパターンとターゲットクラスの関係を阻害する新しい手法であるunlabeled Data Purification (UPure)を提案する。
論文 参考訳(メタデータ) (2024-07-14T12:42:11Z) - Can We Trust the Unlabeled Target Data? Towards Backdoor Attack and Defense on Model Adaptation [120.42853706967188]
本研究は, よく設計された毒物標的データによるモデル適応に対するバックドア攻撃の可能性を探る。
既存の適応アルゴリズムと組み合わせたMixAdaptというプラグイン・アンド・プレイ方式を提案する。
論文 参考訳(メタデータ) (2024-01-11T16:42:10Z) - Does Few-shot Learning Suffer from Backdoor Attacks? [63.9864247424967]
数発の学習がバックドアアタックに対して脆弱であることは明らかです。
本手法は,FSLタスクにおける攻撃成功率(ASR)を,異なる数発の学習パラダイムで示す。
この研究は、数発の学習がまだバックドア攻撃に悩まされており、そのセキュリティに注意を払う必要があることを明らかにしている。
論文 参考訳(メタデータ) (2023-12-31T06:43:36Z) - Erasing Self-Supervised Learning Backdoor by Cluster Activation Masking [65.44477004525231]
研究者は最近、自己監視学習(SSL)がバックドア攻撃に脆弱であることを発見した。
本稿では,クラスタアクティベーションマスキングによるSSLバックドアの消去を提案し,新しいPoisonCAM法を提案する。
ImageNet-100の最先端手法の3%と比較して,バックドアトリガ検出の精度は96%であった。
論文 参考訳(メタデータ) (2023-12-13T08:01:15Z) - ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep
Learning Paradigms [39.753721029332326]
バックドアデータ検出は、エンドツーエンドの教師あり学習(SL)設定で伝統的に研究されている。
近年,ラベル付きデータの必要性の低さから,自己教師付き学習(SSL)や転送学習(TL)の普及が進んでいる。
既存の検出手法の性能は様々な攻撃や毒素比で大きく異なり、すべて最先端のクリーンラベル攻撃では失敗する。
論文 参考訳(メタデータ) (2023-02-22T14:43:33Z) - An Embarrassingly Simple Backdoor Attack on Self-supervised Learning [52.28670953101126]
自己教師付き学習(SSL)は、ラベルに頼ることなく、複雑なデータの高品質な表現を学習することができる。
SSLのバックドア攻撃に対する脆弱性について検討する。
論文 参考訳(メタデータ) (2022-10-13T20:39:21Z) - Backdoor Smoothing: Demystifying Backdoor Attacks on Deep Neural
Networks [25.23881974235643]
バックドア攻撃は、引き起こされたサンプルの周りでよりスムーズな決定関数を誘導することを示します。
実験の結果,入力サンプルにトリガーを付加するとスムーズさが増加し,この現象はより成功した攻撃に対してより顕著であることがわかった。
論文 参考訳(メタデータ) (2020-06-11T18:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。