3CAD: A Large-Scale Real-World 3C Product Dataset for Unsupervised Anomaly
- URL: http://arxiv.org/abs/2502.05761v1
- Date: Sun, 09 Feb 2025 03:37:54 GMT
- Title: 3CAD: A Large-Scale Real-World 3C Product Dataset for Unsupervised Anomaly
- Authors: Enquan Yang, Peng Xing, Hanyang Sun, Wenbo Guo, Yuanwei Ma, Zechao Li, Dan Zeng,
- Abstract summary: We propose a new large-scale anomaly detection dataset called 3CAD.
3CAD includes eight different types of manufactured parts, totaling 27,039 high- resolution images labeled with pixel-level anomalies.
This is the largest and first anomaly de-tection dataset dedicated to 3C product quality control.
- Score: 22.150521360544744
- License:
- Abstract: Industrial anomaly detection achieves progress thanks to datasets such as MVTec-AD and VisA. However, they suf- fer from limitations in terms of the number of defect sam- ples, types of defects, and availability of real-world scenes. These constraints inhibit researchers from further exploring the performance of industrial detection with higher accuracy. To this end, we propose a new large-scale anomaly detection dataset called 3CAD, which is derived from real 3C produc- tion lines. Specifically, the proposed 3CAD includes eight different types of manufactured parts, totaling 27,039 high- resolution images labeled with pixel-level anomalies. The key features of 3CAD are that it covers anomalous regions of different sizes, multiple anomaly types, and the possibility of multiple anomalous regions and multiple anomaly types per anomaly image. This is the largest and first anomaly de- tection dataset dedicated to 3C product quality control for community exploration and development. Meanwhile, we in- troduce a simple yet effective framework for unsupervised anomaly detection: a Coarse-to-Fine detection paradigm with Recovery Guidance (CFRG). To detect small defect anoma- lies, the proposed CFRG utilizes a coarse-to-fine detection paradigm. Specifically, we utilize a heterogeneous distilla- tion model for coarse localization and then fine localiza- tion through a segmentation model. In addition, to better capture normal patterns, we introduce recovery features as guidance. Finally, we report the results of our CFRG frame- work and popular anomaly detection methods on the 3CAD dataset, demonstrating strong competitiveness and providing a highly challenging benchmark to promote the development of the anomaly detection field. Data and code are available: https://github.com/EnquanYang2022/3CAD.
Related papers
- Towards Zero-shot 3D Anomaly Localization [58.62650061201283]
3DzAL is a novel patch-level contrastive learning framework for 3D anomaly detection and localization.
We show that 3DzAL outperforms the state-of-the-art anomaly detection and localization performance.
arXiv Detail & Related papers (2024-12-05T16:25:27Z) - R3D-AD: Reconstruction via Diffusion for 3D Anomaly Detection [12.207437451118036]
3D anomaly detection plays a crucial role in monitoring parts for localized inherent defects in precision manufacturing.
Embedding-based and reconstruction-based approaches are among the most popular and successful methods.
We propose R3D-AD, reconstructing anomalous point clouds by diffusion model for precise 3D anomaly detection.
arXiv Detail & Related papers (2024-07-15T16:10:58Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
We propose a framework called Prototypical Residual Network (PRN)
PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions.
We present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies.
arXiv Detail & Related papers (2022-12-05T05:03:46Z) - The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and
Localization [17.437967037670813]
We introduce the first comprehensive 3D dataset for the task of unsupervised anomaly detection and localization.
It is inspired by real-world visual inspection scenarios in which a model has to detect various types of defects on manufactured products.
arXiv Detail & Related papers (2021-12-16T17:35:51Z) - CSCAD: Correlation Structure-based Collective Anomaly Detection in
Complex System [11.739889613196619]
We propose a correlation structure-based collective anomaly detection model for high-dimensional anomaly detection problem in large systems.
Our framework utilize graph convolutional network combining a variational autoencoder to jointly exploit the feature space correlation and reconstruction deficiency of samples.
An anomaly discriminating network can then be trained using low anomalous degree samples as positive samples, and high anomalous degree samples as negative samples.
arXiv Detail & Related papers (2021-05-30T09:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.