Dynamic Pricing in the Linear Valuation Model using Shape Constraints
- URL: http://arxiv.org/abs/2502.05776v1
- Date: Sun, 09 Feb 2025 04:58:33 GMT
- Title: Dynamic Pricing in the Linear Valuation Model using Shape Constraints
- Authors: Daniele Bracale, Moulinath Banerjee, Yuekai Sun, Kevin Stoll, Salam Turki,
- Abstract summary: We propose a shape-constrained approach to dynamic pricing for censored data in the linear valuation model.
Our method attains better empirical regret in comparison to several existing methods in the literature.
- Score: 21.319339643047826
- License:
- Abstract: We propose a shape-constrained approach to dynamic pricing for censored data in the linear valuation model that eliminates the need for tuning parameters commonly required in existing methods. Previous works have addressed the challenge of unknown market noise distribution F using strategies ranging from kernel methods to reinforcement learning algorithms, such as bandit techniques and upper confidence bounds (UCB), under the Lipschitz (and stronger) assumption(s) on $F_0$. In contrast, our method relies on isotonic regression under the weaker assumption that $F_0$ is $\alpha$-Holder continuous for some $\alpha \in (0,1]$. We obtain an upper bound on the asymptotic expected regret that matches existing bounds in the literature for $\alpha = 1$ (the Lipschitz case). Simulations and experiments with real-world data obtained by Welltower Inc (a major healthcare Real Estate Investment Trust) consistently demonstrate that our method attains better empirical regret in comparison to several existing methods in the literature while offering the advantage of being completely tuning-parameter free.
Related papers
- Gradients can train reward models: An Empirical Risk Minimization Approach for Offline Inverse RL and Dynamic Discrete Choice Model [9.531082746970286]
We study the problem of estimating Dynamic Choice (DDC) models, also known as offline Maximum Entropy-Regularized Inverse Reinforcement Learning ( offline MaxEnt-IRL) in machine learning.
The objective is to recover reward or $Q*$ functions that govern agent behavior from offline behavior data.
We propose a globally convergent gradient-based method for solving these problems without the restrictive assumption of linearly parameterized rewards.
arXiv Detail & Related papers (2025-02-19T22:22:20Z) - Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.
We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Regret Minimization and Statistical Inference in Online Decision Making with High-dimensional Covariates [7.21848268647674]
We integrate the $varepsilon$-greedy bandit algorithm for decision-making with a hard thresholding algorithm for estimating sparse bandit parameters.
Under a margin condition, our method achieves either $O(T1/2)$ regret or classical $O(T1/2)$-consistent inference.
arXiv Detail & Related papers (2024-11-10T01:47:11Z) - Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees [56.80920351680438]
We study high-probability convergence in online learning, in the presence of heavy-tailed noise.
Compared to state-of-the-art, who only consider clipping and require noise with bounded $p$-th moments, we provide guarantees for a broad class of nonlinearities.
arXiv Detail & Related papers (2024-10-17T18:25:28Z) - Analysis of Bootstrap and Subsampling in High-dimensional Regularized Regression [29.57766164934947]
We investigate popular resampling methods for estimating the uncertainty of statistical models.
We provide a tight description of the biases and variances estimated by these methods in the context of generalized linear models.
arXiv Detail & Related papers (2024-02-21T08:50:33Z) - Online non-parametric likelihood-ratio estimation by Pearson-divergence
functional minimization [55.98760097296213]
We introduce a new framework for online non-parametric LRE (OLRE) for the setting where pairs of iid observations $(x_t sim p, x'_t sim q)$ are observed over time.
We provide theoretical guarantees for the performance of the OLRE method along with empirical validation in synthetic experiments.
arXiv Detail & Related papers (2023-11-03T13:20:11Z) - CoLiDE: Concomitant Linear DAG Estimation [12.415463205960156]
We deal with the problem of learning acyclic graph structure from observational data to a linear equation.
We propose a new convex score function for sparsity-aware learning DAGs.
arXiv Detail & Related papers (2023-10-04T15:32:27Z) - Optimal Online Generalized Linear Regression with Stochastic Noise and
Its Application to Heteroscedastic Bandits [88.6139446295537]
We study the problem of online generalized linear regression in the setting of a generalized linear model with possibly unbounded additive noise.
We provide a sharp analysis of the classical follow-the-regularized-leader (FTRL) algorithm to cope with the label noise.
We propose an algorithm based on FTRL to achieve the first variance-aware regret bound.
arXiv Detail & Related papers (2022-02-28T08:25:26Z) - Improved Convergence Rates for Sparse Approximation Methods in
Kernel-Based Learning [48.08663378234329]
Kernel-based models such as kernel ridge regression and Gaussian processes are ubiquitous in machine learning applications.
Existing sparse approximation methods can yield a significant reduction in the computational cost.
We provide novel confidence intervals for the Nystr"om method and the sparse variational Gaussian processes approximation method.
arXiv Detail & Related papers (2022-02-08T17:22:09Z) - Nearly Dimension-Independent Sparse Linear Bandit over Small Action
Spaces via Best Subset Selection [71.9765117768556]
We consider the contextual bandit problem under the high dimensional linear model.
This setting finds essential applications such as personalized recommendation, online advertisement, and personalized medicine.
We propose doubly growing epochs and estimating the parameter using the best subset selection method.
arXiv Detail & Related papers (2020-09-04T04:10:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.