Dynamic Pricing in the Linear Valuation Model using Shape Constraints
- URL: http://arxiv.org/abs/2502.05776v3
- Date: Fri, 11 Apr 2025 21:17:16 GMT
- Title: Dynamic Pricing in the Linear Valuation Model using Shape Constraints
- Authors: Daniele Bracale, Moulinath Banerjee, Yuekai Sun, Kevin Stoll, Salam Turki,
- Abstract summary: We propose a shape-constrained approach to dynamic pricing for censored data in the linear valuation model.<n>Our method attains lower empirical regret in comparison to several existing methods in the literature.
- Score: 21.319339643047826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a shape-constrained approach to dynamic pricing for censored data in the linear valuation model eliminating the need for tuning parameters commonly required by existing methods. Previous works have addressed the challenge of unknown market noise distribution $F_0$ using strategies ranging from kernel methods to reinforcement learning algorithms, such as bandit techniques and upper confidence bounds (UCB), under the assumption that $F_0$ satisfies Lipschitz (or stronger) conditions. In contrast, our method relies on isotonic regression under the weaker assumption that $F_0$ is $\alpha$-H\"older continuous for some $\alpha \in (0,1]$, for which we derive a regret upper bound. Simulations and experiments with real-world data obtained by Welltower Inc (a major healthcare Real Estate Investment Trust) consistently demonstrate that our method attains lower empirical regret in comparison to several existing methods in the literature while offering the advantage of being tuning-parameter free.
Related papers
- Gradients can train reward models: An Empirical Risk Minimization Approach for Offline Inverse RL and Dynamic Discrete Choice Model [9.531082746970286]
We study the problem of estimating Dynamic Choice (DDC) models, also known as offline Maximum Entropy-Regularized Inverse Reinforcement Learning ( offline MaxEnt-IRL) in machine learning.
The objective is to recover reward or $Q*$ functions that govern agent behavior from offline behavior data.
We propose a globally convergent gradient-based method for solving these problems without the restrictive assumption of linearly parameterized rewards.
arXiv Detail & Related papers (2025-02-19T22:22:20Z) - Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.<n>We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - Regret Minimization and Statistical Inference in Online Decision Making with High-dimensional Covariates [7.21848268647674]
We integrate the $varepsilon$-greedy bandit algorithm for decision-making with a hard thresholding algorithm for estimating sparse bandit parameters.
Under a margin condition, our method achieves either $O(T1/2)$ regret or classical $O(T1/2)$-consistent inference.
arXiv Detail & Related papers (2024-11-10T01:47:11Z) - Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees [56.80920351680438]
We study high-probability convergence in online learning, in the presence of heavy-tailed noise.
Compared to state-of-the-art, who only consider clipping and require noise with bounded $p$-th moments, we provide guarantees for a broad class of nonlinearities.
arXiv Detail & Related papers (2024-10-17T18:25:28Z) - Stochastic gradient descent for streaming linear and rectified linear systems with adversarial corruptions [8.756480554457985]
We show novel nearly linear convergence guarantees of SGD-exp to the true parameter with up to $50%$ Massart corruption rate.<n>This is the first convergence guarantee result for robust ReLU regression in the streaming setting.
arXiv Detail & Related papers (2024-03-02T12:45:01Z) - Online non-parametric likelihood-ratio estimation by Pearson-divergence
functional minimization [55.98760097296213]
We introduce a new framework for online non-parametric LRE (OLRE) for the setting where pairs of iid observations $(x_t sim p, x'_t sim q)$ are observed over time.
We provide theoretical guarantees for the performance of the OLRE method along with empirical validation in synthetic experiments.
arXiv Detail & Related papers (2023-11-03T13:20:11Z) - CoLiDE: Concomitant Linear DAG Estimation [12.415463205960156]
We deal with the problem of learning acyclic graph structure from observational data to a linear equation.
We propose a new convex score function for sparsity-aware learning DAGs.
arXiv Detail & Related papers (2023-10-04T15:32:27Z) - Conservative Bayesian Model-Based Value Expansion for Offline Policy
Optimization [41.774837419584735]
offline reinforcement learning (RL) addresses the problem of learning a performant policy from a fixed batch of data collected by following some behavior policy.
Model-based approaches are particularly appealing since they can extract more learning signals from the logged dataset by learning a model of the environment.
arXiv Detail & Related papers (2022-10-07T20:13:50Z) - A Provably Efficient Model-Free Posterior Sampling Method for Episodic
Reinforcement Learning [50.910152564914405]
Existing posterior sampling methods for reinforcement learning are limited by being model-based or lack worst-case theoretical guarantees beyond linear MDPs.
This paper proposes a new model-free formulation of posterior sampling that applies to more general episodic reinforcement learning problems with theoretical guarantees.
arXiv Detail & Related papers (2022-08-23T12:21:01Z) - Optimal Online Generalized Linear Regression with Stochastic Noise and
Its Application to Heteroscedastic Bandits [88.6139446295537]
We study the problem of online generalized linear regression in the setting of a generalized linear model with possibly unbounded additive noise.
We provide a sharp analysis of the classical follow-the-regularized-leader (FTRL) algorithm to cope with the label noise.
We propose an algorithm based on FTRL to achieve the first variance-aware regret bound.
arXiv Detail & Related papers (2022-02-28T08:25:26Z) - Improved Convergence Rates for Sparse Approximation Methods in
Kernel-Based Learning [48.08663378234329]
Kernel-based models such as kernel ridge regression and Gaussian processes are ubiquitous in machine learning applications.
Existing sparse approximation methods can yield a significant reduction in the computational cost.
We provide novel confidence intervals for the Nystr"om method and the sparse variational Gaussian processes approximation method.
arXiv Detail & Related papers (2022-02-08T17:22:09Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Nearly Dimension-Independent Sparse Linear Bandit over Small Action
Spaces via Best Subset Selection [71.9765117768556]
We consider the contextual bandit problem under the high dimensional linear model.
This setting finds essential applications such as personalized recommendation, online advertisement, and personalized medicine.
We propose doubly growing epochs and estimating the parameter using the best subset selection method.
arXiv Detail & Related papers (2020-09-04T04:10:39Z) - Sparse Identification of Nonlinear Dynamical Systems via Reweighted
$\ell_1$-regularized Least Squares [62.997667081978825]
This work proposes an iterative sparse-regularized regression method to recover governing equations of nonlinear systems from noisy state measurements.
The aim of this work is to improve the accuracy and robustness of the method in the presence of state measurement noise.
arXiv Detail & Related papers (2020-05-27T08:30:15Z) - Upper Confidence Primal-Dual Reinforcement Learning for CMDP with
Adversarial Loss [145.54544979467872]
We consider online learning for episodically constrained Markov decision processes (CMDPs)
We propose a new emphupper confidence primal-dual algorithm, which only requires the trajectories sampled from the transition model.
Our analysis incorporates a new high-probability drift analysis of Lagrange multiplier processes into the celebrated regret analysis of upper confidence reinforcement learning.
arXiv Detail & Related papers (2020-03-02T05:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.