論文の概要: HCMRM: A High-Consistency Multimodal Relevance Model for Search Ads
- arxiv url: http://arxiv.org/abs/2502.05822v1
- Date: Sun, 09 Feb 2025 09:07:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:29:02.799770
- Title: HCMRM: A High-Consistency Multimodal Relevance Model for Search Ads
- Title(参考訳): HCMRM:検索広告のための高一貫性マルチモーダル関連モデル
- Authors: Guobing Gan, Kaiming Gao, Li Wang, Shen Jiang, Peng Jiang,
- Abstract要約: 本稿では,広告システムにおけるランク付けの有効性を高めるために,クエリ・ツー・ビデオの関連性マッチングの改善に焦点をあてる。
これは、トレーニング前タスクと関連タスクの整合性を高めるために、シンプルだが効果的な方法を利用している。
提案手法はクアイシュ州検索広告システムに1年以上展開され、無関係広告の割合が6.1%減少し、広告収入が1.4%増加した。
- 参考スコア(独自算出の注目度): 10.61722566941537
- License:
- Abstract: Search advertising is essential for merchants to reach the target users on short video platforms. Short video ads aligned with user search intents are displayed through relevance matching and bid ranking mechanisms. This paper focuses on improving query-to-video relevance matching to enhance the effectiveness of ranking in ad systems. Recent vision-language pre-training models have demonstrated promise in various multimodal tasks. However, their contribution to downstream query-video relevance tasks is limited, as the alignment between the pair of visual signals and text differs from the modeling of the triplet of the query, visual signals, and video text. In addition, our previous relevance model provides limited ranking capabilities, largely due to the discrepancy between the binary cross-entropy fine-tuning objective and the ranking objective. To address these limitations, we design a high-consistency multimodal relevance model (HCMRM). It utilizes a simple yet effective method to enhance the consistency between pre-training and relevance tasks. Specifically, during the pre-training phase, along with aligning visual signals and video text, several keywords are extracted from the video text as pseudo-queries to perform the triplet relevance modeling. For the fine-tuning phase, we introduce a hierarchical softmax loss, which enables the model to learn the order within labels while maximizing the distinction between positive and negative samples. This promotes the fusion ranking of relevance and bidding in the subsequent ranking stage. The proposed method has been deployed in the Kuaishou search advertising system for over a year, contributing to a 6.1% reduction in the proportion of irrelevant ads and a 1.4% increase in ad revenue.
- Abstract(参考訳): 検索広告は、ショートビデオプラットフォームでターゲットユーザーにリーチするためには不可欠である。
ユーザ検索意図に沿ったショートビデオ広告は、関連マッチングと入札ランキング機構を介して表示される。
本稿では,広告システムにおけるランク付けの有効性を高めるために,クエリ・ツー・ビデオの関連性マッチングの改善に焦点をあてる。
最近のビジョン言語事前学習モデルは、様々なマルチモーダルタスクにおいて有望であることを示す。
しかし、クェリ-ビデオ関連タスクへのそれらの貢献は、クェリのトリプレット、ビジュアル信号、およびビデオテキストのモデリングとは異なるため、制限されている。
さらに,従来の関連モデルでは,二進的クロスエントロピー微調整目標とランキング目標との相違が主な原因で,ランク付け能力に限界がある。
これらの制約に対処するため,我々はHCMRM(High-Consistency Multimodal Relevance Model)を設計する。
これは、トレーニング前タスクと関連タスクの整合性を高めるために、シンプルだが効果的な方法を利用している。
具体的には、事前学習フェーズにおいて、視覚信号とビデオテキストの整列とともに、ビデオテキストから擬似クエリとして複数のキーワードを抽出し、トリプルト関連モデリングを行う。
微調整フェーズでは,正試料と負試料の区別を最大化しながらラベル内の順序を学習できる階層型ソフトマックスロスを導入する。
これにより、その後のランキング段階における関連性と入札の融合ランキングが促進される。
提案手法はクアイシュ州検索広告システムに1年以上展開され、無関係広告の割合が6.1%減少し、広告収入が1.4%増加した。
関連論文リスト
- Action Quality Assessment via Hierarchical Pose-guided Multi-stage Contrastive Regression [25.657978409890973]
アクションアセスメント(AQA)は、運動性能の自動的、公平な評価を目的としている。
現在の手法では、動画を固定フレームに分割することに集中しており、サブアクションの時間的連続性を損なう。
階層的なポーズ誘導型多段階コントラスト回帰による行動品質評価手法を提案する。
論文 参考訳(メタデータ) (2025-01-07T10:20:16Z) - Prompting Video-Language Foundation Models with Domain-specific Fine-grained Heuristics for Video Question Answering [71.62961521518731]
HeurVidQAは、ドメイン固有のエンティティアクションを利用して、事前訓練されたビデオ言語基盤モデルを洗練するフレームワークである。
我々のアプローチでは、これらのモデルを暗黙の知識エンジンとして扱い、ドメイン固有のエンティティアクションプロンサを使用して、推論を強化する正確な手がかりにモデルを焦点を向けます。
論文 参考訳(メタデータ) (2024-10-12T06:22:23Z) - A Novel Energy based Model Mechanism for Multi-modal Aspect-Based
Sentiment Analysis [85.77557381023617]
マルチモーダル感情分析のための新しいフレームワークDQPSAを提案する。
PDQモジュールは、プロンプトをビジュアルクエリと言語クエリの両方として使用し、プロンプト対応の視覚情報を抽出する。
EPEモジュールはエネルギーベースモデルの観点から解析対象の境界ペアリングをモデル化する。
論文 参考訳(メタデータ) (2023-12-13T12:00:46Z) - CM-PIE: Cross-modal perception for interactive-enhanced audio-visual
video parsing [23.85763377992709]
本稿では,セグメントベースアテンションモジュールを適用して,細粒度の特徴を学習できる対話型クロスモーダル認識手法(CM-PIE)を提案する。
当社のモデルでは、Look、Listen、Parseデータセットのパースパフォーマンスが改善されています。
論文 参考訳(メタデータ) (2023-10-11T14:15:25Z) - Align before Search: Aligning Ads Image to Text for Accurate Cross-Modal
Sponsored Search [27.42717207107]
クロスモーダルスポンサー検索は、消費者が検索エンジンで自然言語クエリーによって望ましい商品を探す際に、マルチモーダル広告(ads)を表示する。
画像とテキストの両方で広告特有の情報を調整できることは、正確で柔軟なスポンサー付き検索に不可欠だ。
広告画像の細粒度部分を対応するテキストに明示的にマッピングする単純なアライメントネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-28T03:43:57Z) - Boosting Multi-Modal E-commerce Attribute Value Extraction via Unified
Learning Scheme and Dynamic Range Minimization [14.223683006262151]
本稿では,統合学習スキームとダイナミックレンジ最小化によるマルチモーダルeコマース属性値抽出手法を提案する。
一般的なマルチモーダル電子商取引ベンチマークの実験は、我々の手法が他の最先端技術よりも優れた性能を発揮することを示している。
論文 参考訳(メタデータ) (2022-07-15T03:58:04Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
自己制御学習(SRL)は、中間表現を連続的に制御し、現在のタイムスタンプのフレームにおける新しい情報を強調する表現を作り出すことを目的としている。
SRLは2つのエゴセントリックなビデオデータセットと2つの第三者のビデオデータセットにおいて、既存の最先端技術よりも大幅に優れています。
論文 参考訳(メタデータ) (2021-11-23T03:29:18Z) - Instance-Level Relative Saliency Ranking with Graph Reasoning [126.09138829920627]
そこで本研究では,有意な事例を分割し,相対的有意な有意なランク順序を推定するための統一モデルを提案する。
また、サラレンシーランキングブランチを効果的にトレーニングするために、新しい損失関数も提案されている。
実験の結果,提案手法は従来の手法よりも有効であることがわかった。
論文 参考訳(メタデータ) (2021-07-08T13:10:42Z) - DeepQAMVS: Query-Aware Hierarchical Pointer Networks for Multi-Video
Summarization [127.16984421969529]
DeepQAMVSと呼ばれるマルチビデオ要約のための新しいQuery-Aware階層型ポインタネットワークを紹介します。
DeepQAMVSは強化学習で訓練され、代表性、多様性、クエリ適応性、時間的コヒーレンスを捉えた報酬を取り入れている。
MVS1Kデータセットで最新の結果を達成し、入力されたビデオフレームの数と線形に推論時間をスケーリングします。
論文 参考訳(メタデータ) (2021-05-13T17:33:26Z) - Modeling long-term interactions to enhance action recognition [81.09859029964323]
本稿では,フレームレベルと時間レベルの両方でオブジェクト間の相互作用のセマンティクスを利用する,エゴセントリックなビデオのアンダースタンドアクションに対する新しいアプローチを提案する。
ユーザの手とほぼ対応するプライマリ領域と、相互作用するオブジェクトに対応する可能性のあるセカンダリ領域のセットを入力として、領域ベースのアプローチを使用する。
提案手法は, 標準ベンチマークの動作認識において, 最先端技術よりも優れている。
論文 参考訳(メタデータ) (2021-04-23T10:08:15Z) - Frame-wise Cross-modal Matching for Video Moment Retrieval [32.68921139236391]
ビデオモーメント検索は、与えられた言語クエリのためにビデオ中の瞬間を検索するターゲットである。
本課題は,1)未編集ビデオにおける関連モーメントのローカライズの必要性,2)テキストクエリとビデオコンテンツ間のセマンティックなギャップを埋めることである。
本稿では,対話モデルに基づいて時間境界を予測できる注意的相互関連マッチングモデルを提案する。
論文 参考訳(メタデータ) (2020-09-22T10:25:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。