論文の概要: Norm Augmented Graph AutoEncoders for Link Prediction
- arxiv url: http://arxiv.org/abs/2502.05868v1
- Date: Sun, 09 Feb 2025 12:08:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:30:41.486969
- Title: Norm Augmented Graph AutoEncoders for Link Prediction
- Title(参考訳): リンク予測のためのノーム拡張グラフオートエンコーダ
- Authors: Yunhui Liu, Huaisong Zhang, Xinyi Gao, Liuye Guo, Zhen Tao, Tieke He,
- Abstract要約: リンク予測はグラフ構造化データにおいて重要な問題である。
本研究では,GAEが学習したノード埋め込みのノルムが,次数の異なるノード間で変動を示すことを示す。
より大きなノルムの埋め込みは、正のリンクに対する高いスコア、負のリンクに対する低いスコアを予測するためにデコーダを導く傾向があることを示す。
- 参考スコア(独自算出の注目度): 26.246289321470385
- License:
- Abstract: Link Prediction (LP) is a crucial problem in graph-structured data. Graph Neural Networks (GNNs) have gained prominence in LP, with Graph AutoEncoders (GAEs) being a notable representation. However, our empirical findings reveal that GAEs' LP performance suffers heavily from the long-tailed node degree distribution, i.e., low-degree nodes tend to exhibit inferior LP performance compared to high-degree nodes. \emph{What causes this degree-related bias, and how can it be mitigated?} In this study, we demonstrate that the norm of node embeddings learned by GAEs exhibits variation among nodes with different degrees, underscoring its central significance in influencing the final performance of LP. Specifically, embeddings with larger norms tend to guide the decoder towards predicting higher scores for positive links and lower scores for negative links, thereby contributing to superior performance. This observation motivates us to improve GAEs' LP performance on low-degree nodes by increasing their embedding norms, which can be implemented simply yet effectively by introducing additional self-loops into the training objective for low-degree nodes. This norm augmentation strategy can be seamlessly integrated into existing GAE methods with light computational cost. Extensive experiments on various datasets and GAE methods show the superior performance of norm-augmented GAEs.
- Abstract(参考訳): リンク予測(LP)はグラフ構造化データにおいて重要な問題である。
Graph Neural Networks(GNN)はLPで有名になり、グラフオートエンコーダ(GAE)が注目されている。
しかし,我々は,GAEsのLP性能が長期ノード度分布に大きく影響していること,すなわち,低次ノードは高次ノードに比べて低次LP性能を示す傾向にあることを示した。
この度合いに関するバイアスの原因は何で、どのように緩和できるのか?
本研究では,GAEが学習したノード埋め込みのノルムが,異なる次数のノード間で変動を示し,LPの最終的な性能に影響を与える中心的な重要性を実証する。
具体的には、より大きなノルムの埋め込みは、正のリンクに対する高いスコアと負のリンクに対する低いスコアを予測するためにデコーダを導く傾向があり、それによって性能が向上する。
この観察により,低次ノードの学習目標に自己ループを追加することで,組込み規範を効果的に実装し,低次ノード上でのGAEのLP性能を向上させることができる。
この標準拡張戦略は、計算コストの少ない既存のGAE手法にシームレスに統合することができる。
各種データセットおよびGAE法に関する大規模な実験は、標準拡張GAEの優れた性能を示す。
関連論文リスト
- Node Duplication Improves Cold-start Link Prediction [52.917775253887264]
グラフニューラルネットワーク(GNN)は、グラフ機械学習において顕著である。
近年の研究では、GNNは低次ノードで良い結果を出すのに苦労していることが示されている。
我々はNodeDupと呼ばれるシンプルだが驚くほど効果的な拡張手法を提案する。
論文 参考訳(メタデータ) (2024-02-15T05:07:39Z) - Breaking the Entanglement of Homophily and Heterophily in
Semi-supervised Node Classification [25.831508778029097]
統計的観点から,ノードプロファイルとトポロジの関係を定量化するAMUDを提案する。
また、AMUDのための新しい有向グラフ学習パラダイムとしてADPAを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:54:11Z) - A Topological Perspective on Demystifying GNN-Based Link Prediction
Performance [72.06314265776683]
トポロジカル濃度 (TC) は、各ノードの局所部分グラフと隣人の部分グラフの交点に基づいている。
また,TCLは,次数や部分グラフ密度などの他のノードレベルのトポロジ指標よりもLP性能と高い相関性を示した。
我々は, 近似トポロジカル濃度 (ATC) を提案し, 理論的・経験的にTC近似の有効性を正当化し, 複雑さを低減させる。
論文 参考訳(メタデータ) (2023-10-06T22:07:49Z) - OrthoReg: Improving Graph-regularized MLPs via Orthogonality
Regularization [66.30021126251725]
グラフニューラルネットワーク(GNN)は現在、グラフ構造データのモデリングにおいて支配的である。
グラフ正規化ネットワーク(GR-MLP)はグラフ構造情報をモデル重みに暗黙的に注入するが、その性能はほとんどのタスクにおいてGNNとほとんど一致しない。
GR-MLPは,最大数個の固有値が埋め込み空間を支配する現象である次元崩壊に苦しむことを示す。
次元崩壊問題を緩和する新しいGR-MLPモデルであるOrthoRegを提案する。
論文 参考訳(メタデータ) (2023-01-31T21:20:48Z) - ResNorm: Tackling Long-tailed Degree Distribution Issue in Graph Neural
Networks via Normalization [80.90206641975375]
本稿では,正規化によるGNNの性能向上に焦点をあてる。
グラフ中のノード次数の長期分布を調べることにより、GNNの新しい正規化法を提案する。
ResNormの$scale$操作は、尾ノードの精度を向上させるために、ノード単位の標準偏差(NStd)分布を再設定する。
論文 参考訳(メタデータ) (2022-06-16T13:49:09Z) - Simplifying Node Classification on Heterophilous Graphs with Compatible
Label Propagation [6.071760028190454]
本稿では,グラフに対する半教師付きノード分類において,グラフアルゴリズムのラベル伝搬と浅いニューラルネットワークを組み合わせることで,GNNに匹敵する性能が得られることを示す。
本稿では,ノードが反対クラスのノードに接続されることの多い低ホモフィリーグラフ上では,このアプローチが不十分であることを示す。
アルゴリズムはまずクラス互換行列を学習し、次にクラス適合性によって重み付けされたLPアルゴリズムを用いてラベル予測を集約する。
論文 参考訳(メタデータ) (2022-05-19T08:34:34Z) - RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional
Network [102.27090022283208]
グラフ畳み込みネットワーク(GCN)は多くの現実世界のアプリケーションにおいて重要な役割を担っている。
GCNはしばしばノードの次数に対する性能の相違を示し、結果として低次ノードの予測精度が悪化する。
我々は、Rawlsian差分原理の観点から、GCNの次数関連性能格差を緩和する問題を定式化する。
論文 参考訳(メタデータ) (2022-02-28T05:07:57Z) - Understanding and Resolving Performance Degradation in Graph
Convolutional Networks [105.14867349802898]
グラフ畳み込みネットワーク(GCN)は複数のレイヤを積み重ね、グラフ構造化データ上でノード表現を学習するためのPROPとTRANを実行する。
GCNはモデルが深くなるとパフォーマンスが低下する傾向がある。
本稿では,TRANやPROPのみを積み重ねることによるGCNの性能劣化について実験的に検討する。
論文 参考訳(メタデータ) (2020-06-12T12:12:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。