論文の概要: Multi-granular Training Strategies for Robust Multi-hop Reasoning Over Noisy and Heterogeneous Knowledge Sources
- arxiv url: http://arxiv.org/abs/2502.05944v1
- Date: Sun, 09 Feb 2025 16:06:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:32:53.381421
- Title: Multi-granular Training Strategies for Robust Multi-hop Reasoning Over Noisy and Heterogeneous Knowledge Sources
- Title(参考訳): 雑音と不均一な知識に基づくロバストなマルチホップ推論のためのマルチグラニュラートレーニング戦略
- Authors: Jackson Coleman, Isaiah Lawrence, Benjamin Turner,
- Abstract要約: マルチソースマルチホップ質問応答(QA)は自然言語処理における課題である。
既存の手法は、しばしばカスケードエラー、知識衝突の処理が不十分なこと、計算の非効率さに悩まされる。
パラメトリックおよび検索された知識を動的に融合する適応多元的知識指向推論(AMKOR)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Multi-source multi-hop question answering (QA) represents a challenging task in natural language processing due to the need for dynamic integration of heterogeneous knowledge sources and multi-step reasoning. Existing methods often suffer from cascading errors, insufficient handling of knowledge conflicts, and computational inefficiency. In this paper, we propose Adaptive Multi-source Knowledge-Oriented Reasoning (AMKOR), a generative framework that leverages large language models (LLMs) to dynamically fuse parametric and retrieved knowledge while exploring reasoning trajectories using probabilistic beam reasoning. AMKOR is further enhanced by a multi-granular learning strategy, optimizing both local reasoning steps and global answer accuracy. Experiments conducted on four widely-used multi-hop QA datasets, including HotpotQA and MuSiQue, demonstrate that AMKOR achieves state-of-the-art performance, significantly outperforming baseline methods on both reasoning accuracy and robustness. Additional analyses confirm its scalability, adaptability to noisy knowledge, and superior ability to handle complex multi-hop tasks. This work establishes a new benchmark for multi-source multi-hop QA by effectively combining reasoning quality and efficiency.
- Abstract(参考訳): マルチソースマルチホップ質問応答(QA)は,異種知識源の動的統合や多段階推論の必要性から,自然言語処理における課題である。
既存の手法は、しばしばカスケードエラー、知識衝突の処理が不十分なこと、計算の非効率さに悩まされる。
本稿では,大規模言語モデル(LLM)を利用してパラメトリックおよび検索された知識を動的に融合し,確率的ビーム推論を用いた軌道推論を探索する,適応多元的知識指向推論(AMKOR)を提案する。
AMKORは、局所的な推論ステップとグローバルな回答精度の両方を最適化するマルチグラニュラーラーラーニング戦略によってさらに強化されている。
HotpotQAとMuSiQueを含む4つの広く使われているマルチホップQAデータセットで実施された実験は、AMKORが最先端のパフォーマンスを達成し、推論精度とロバスト性の両方でベースライン手法を大幅に上回ることを示した。
さらなる分析により、そのスケーラビリティ、ノイズの多い知識への適応性、複雑なマルチホップタスクを処理する優れた能力が確認されている。
この研究は、推論品質と効率を効果的に組み合わせて、マルチソースマルチホップQAのための新しいベンチマークを確立する。
関連論文リスト
- Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark [73.27104042215207]
EMMAは,数学,物理,化学,コーディングにまたがる有機マルチモーダル推論を対象とするベンチマークである。
EMMAタスクは、各モードで独立に推論することで対処できない高度なクロスモーダル推論を要求する。
EMMA上での最先端MLLMの評価は、複雑なマルチモーダルおよびマルチステップ推論タスクの処理において、重大な制限を生じさせる。
論文 参考訳(メタデータ) (2025-01-09T18:55:52Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
多段階多モーダル推論タスクは、大規模言語モデル(MLLM)に重大な課題をもたらす
本稿では,MLLMの推論能力の向上を目的とした汎用フレームワークAR-MCTSを提案する。
我々は,AR-MCTSがサンプリングの多様性と精度を最適化し,信頼性の高いマルチモーダル推論を実現することを示す。
論文 参考訳(メタデータ) (2024-12-19T13:25:39Z) - An Entailment Tree Generation Approach for Multimodal Multi-Hop Question Answering with Mixture-of-Experts and Iterative Feedback Mechanism [14.479060028732803]
マルチモーダルなマルチホップ質問応答の現在の手法は、主に2つの課題に直面している。
大量の冗長な情報を含む検索された証拠は、性能を著しく低下させる。
解釈可能な推論ステップのない推論プロセスは、複雑な問題を扱うための論理的誤りを発見するのを難しくする。
論文 参考訳(メタデータ) (2024-12-08T05:47:55Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [49.362750475706235]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering [35.40919477319811]
本稿では,事前学習された言語モデルにマルチホップ関係推論モジュールを組み込む新しい知識認識手法を提案する。
外部知識グラフから抽出したサブグラフに対して、マルチホップ、マルチリレーショナル推論を行う。
パスベースの推論手法とグラフニューラルネットワークを統合して、より優れた解釈性とスケーラビリティを実現する。
論文 参考訳(メタデータ) (2020-05-01T23:10:26Z) - Simultaneously Evolving Deep Reinforcement Learning Models using
Multifactorial Optimization [18.703421169342796]
この研究は、関連する強化学習タスクの解決に向けて、複数のDQLモデルを同時に進化させることのできるフレームワークを提案する。
フレームワークの性能を評価するために、徹底的な実験を行い、議論する。
論文 参考訳(メタデータ) (2020-02-25T10:36:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。