論文の概要: Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering
- arxiv url: http://arxiv.org/abs/2005.00646v2
- Date: Fri, 18 Sep 2020 07:12:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 22:59:42.769716
- Title: Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering
- Title(参考訳): 知識認識型質問応答のためのスケーラブルなマルチホップ関係推論
- Authors: Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, Peifeng Wang, Jun Yan,
Xiang Ren
- Abstract要約: 本稿では,事前学習された言語モデルにマルチホップ関係推論モジュールを組み込む新しい知識認識手法を提案する。
外部知識グラフから抽出したサブグラフに対して、マルチホップ、マルチリレーショナル推論を行う。
パスベースの推論手法とグラフニューラルネットワークを統合して、より優れた解釈性とスケーラビリティを実現する。
- 参考スコア(独自算出の注目度): 35.40919477319811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing work on augmenting question answering (QA) models with external
knowledge (e.g., knowledge graphs) either struggle to model multi-hop relations
efficiently, or lack transparency into the model's prediction rationale. In
this paper, we propose a novel knowledge-aware approach that equips pre-trained
language models (PTLMs) with a multi-hop relational reasoning module, named
multi-hop graph relation network (MHGRN). It performs multi-hop,
multi-relational reasoning over subgraphs extracted from external knowledge
graphs. The proposed reasoning module unifies path-based reasoning methods and
graph neural networks to achieve better interpretability and scalability. We
also empirically show its effectiveness and scalability on CommonsenseQA and
OpenbookQA datasets, and interpret its behaviors with case studies.
- Abstract(参考訳): 質問応答(QA)モデルを外部知識(例えば知識グラフ)で拡張する作業は、マルチホップ関係を効率的にモデル化するのに苦労するか、モデルの予測論理の透明性を欠いている。
本稿では,事前学習言語モデル(PTLM)にマルチホップ関係推論モジュール,MHGRN(Multi-hop graph relation network)を組み込む新しい知識認識手法を提案する。
外部知識グラフから抽出したサブグラフに対して多重ホップ・マルチリレーショナル推論を行う。
提案する推論モジュールは、パスベースの推論手法とグラフニューラルネットワークを統合し、解釈性と拡張性を向上させる。
また,CommonsenseQAおよびOpenbookQAデータセットの有効性とスケーラビリティを実証的に示すとともに,ケーススタディでその振る舞いを解釈する。
関連論文リスト
- GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - G-SAP: Graph-based Structure-Aware Prompt Learning over Heterogeneous Knowledge for Commonsense Reasoning [8.02547453169677]
本稿では,G-SAP という名称のコモンセンス推論のためのグラフベース構造認識プロンプト学習モデルを提案する。
特にエビデンスグラフは、ConceptNet、Wikipedia、Cambridge Dictionaryといった複数の知識ソースを統合することで構築される。
その結果、既存のモデル、特にOpenbookQAデータセット上のSoTA LM+GNNsモデルよりも6.12%改善された。
論文 参考訳(メタデータ) (2024-05-09T08:28:12Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
本稿では,構造化推論を行うためのGNNを模倣するサブグラフ認識型自己認識機構を提案する。
また、モデルパラメータを2万のサブグラフで合成した質問に適応するための適応チューニング戦略も採用する。
実験により、ReasoningLMは、更新されたパラメータが少なく、トレーニングデータが少ない場合でも、最先端のモデルを大きなマージンで上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-30T07:18:54Z) - Leveraging Structured Information for Explainable Multi-hop Question
Answering and Reasoning [14.219239732584368]
本研究では,マルチホップ質問応答のための抽出された意味構造(グラフ)の構築と活用について検討する。
実験結果と人的評価の結果から、我々のフレームワークはより忠実な推論連鎖を生成し、2つのベンチマークデータセットのQA性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-07T05:32:39Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Relational Graph Convolutional Neural Networks for Multihop Reasoning: A
Comparative Study [22.398477810999818]
マルチホップ質問回答(Multihop Question Answering)は、正しい答えを見つけるために推論のステップを必要とする複雑なタスクである。
本稿では, RGCNベースのマルチホップQAモデル, グラフ関係, ノード埋め込みについて検討し, WikiHopデータセット上でのマルチホップQA性能への影響を実証的に検討する。
論文 参考訳(メタデータ) (2022-10-12T17:13:30Z) - Path-Enhanced Multi-Relational Question Answering with Knowledge Graph
Embeddings [16.21156041758793]
PKEEQA(Path and Knowledge Embedding-Enhanced Multi-Relational Question Answering Model)を提案する。
PKEEQAは多関係質問に対するKBQAモデルの性能を、経路からある程度派生した説明可能性で改善することを示す。
論文 参考訳(メタデータ) (2021-10-29T08:37:46Z) - Dynamic Semantic Graph Construction and Reasoning for Explainable
Multi-hop Science Question Answering [50.546622625151926]
マルチホップQAのための説明可能性を得ながら,より有効な事実を活用できる新しいフレームワークを提案する。
a) tt AMR-SG,(a) tt AMR-SG,(a) tt AMR-SG,(a) tt AMR-SG,(c) グラフ畳み込みネットワーク(GCN)を利用した事実レベルの関係モデリング,(c) 推論過程の導出を行う。
論文 参考訳(メタデータ) (2021-05-25T09:14:55Z) - Graph-based Multi-hop Reasoning for Long Text Generation [66.64743847850666]
MRGはグラフベースのマルチホップ推論モジュールとパス認識文実現モジュールの2部で構成されている。
従来のブラックボックスモデルとは異なり、MRGはスケルトンパスを明示的に推論し、提案されたモデルがどのように機能するかを説明する説明的なビューを提供する。
論文 参考訳(メタデータ) (2020-09-28T12:47:59Z) - Language Generation with Multi-Hop Reasoning on Commonsense Knowledge
Graph [124.45799297285083]
知識グラフの構造的情報と意味的情報の両方を活用することで、コモンセンスを意識したテキスト生成が促進されると主張している。
本稿では,外部コモンセンス知識グラフから抽出したマルチリレーショナルパスに基づいて,動的マルチホップ推論を用いた事前学習モデルを実現するマルチホップ推論フロー(GRF)の生成を提案する。
論文 参考訳(メタデータ) (2020-09-24T13:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。