論文の概要: Revisiting Gradient-based Uncertainty for Monocular Depth Estimation
- arxiv url: http://arxiv.org/abs/2502.05964v1
- Date: Sun, 09 Feb 2025 17:21:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:31:58.909794
- Title: Revisiting Gradient-based Uncertainty for Monocular Depth Estimation
- Title(参考訳): 単眼深度推定のための勾配に基づく不確かさの再検討
- Authors: Julia Hornauer, Amir El-Ghoussani, Vasileios Belagiannis,
- Abstract要約: 単分子深度推定モデルに対する勾配に基づく不確実性推定を導入する。
我々は,本手法が再トレーニングを伴わずに不確実性を決定するのに有効であることを実証した。
特に、単分子配列で訓練されたモデルにおいて、最も不確実性が高いため、本手法は関連するアプローチよりも優れる。
- 参考スコア(独自算出の注目度): 10.502852645001882
- License:
- Abstract: Monocular depth estimation, similar to other image-based tasks, is prone to erroneous predictions due to ambiguities in the image, for example, caused by dynamic objects or shadows. For this reason, pixel-wise uncertainty assessment is required for safety-critical applications to highlight the areas where the prediction is unreliable. We address this in a post hoc manner and introduce gradient-based uncertainty estimation for already trained depth estimation models. To extract gradients without depending on the ground truth depth, we introduce an auxiliary loss function based on the consistency of the predicted depth and a reference depth. The reference depth, which acts as pseudo ground truth, is in fact generated using a simple image or feature augmentation, making our approach simple and effective. To obtain the final uncertainty score, the derivatives w.r.t. the feature maps from single or multiple layers are calculated using back-propagation. We demonstrate that our gradient-based approach is effective in determining the uncertainty without re-training using the two standard depth estimation benchmarks KITTI and NYU. In particular, for models trained with monocular sequences and therefore most prone to uncertainty, our method outperforms related approaches. In addition, we publicly provide our code and models: https://github.com/jhornauer/GrUMoDepth
- Abstract(参考訳): 他の画像ベースタスクと類似した単眼深度推定は、例えば動的物体や影によって引き起こされる画像の曖昧さによって、誤った予測をしがちである。
このため、安全クリティカルなアプリケーションにおいて、予測が信頼できない領域を強調するために、画素単位の不確実性評価が必要である。
我々はこれをポストホックな方法で解決し、既に訓練済みの深度推定モデルに対して勾配に基づく不確実性推定を導入する。
地中深度に依存することなく勾配を抽出するために,予測深度と基準深度との整合性に基づく補助損失関数を導入する。
参照深度は擬似基底真理として作用するが、実際には単純な画像や特徴拡張を用いて生成され、我々のアプローチはシンプルで効果的である。
最終的な不確実性スコアを得るには、バックプロパゲーションを用いて、単層又は複数層の特徴写像の導関数w.r.t.を算出する。
本手法は,KITTIとNYUの2つの標準深度推定ベンチマークを用いて再学習することなく,不確実性判定に有効であることを示す。
特に、単分子配列で訓練されたモデルにおいて、最も不確実性が高いため、本手法は関連するアプローチよりも優れる。
https://github.com/jhornauer/GrUMoDepth.com/GrUMoDepth.com
関連論文リスト
- Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
本稿では,画素ごとの深度を連続的にモデル化する手法を提案する。
提案手法の精度(MG)は,KITTI深度予測ベンチマークリーダーボードの上位に位置する。
論文 参考訳(メタデータ) (2023-03-31T16:01:03Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
自己監督型単眼深度推定は静的な場面で顕著な結果を示した。
トレーニングネットワークのマルチビュー整合性の仮定に依存するが、動的オブジェクト領域に違反する。
単一画像の深度を事前に生成するための,外部トレーニング付き単眼深度推定モデルを提案する。
我々のモデルは、高度にダイナミックなシーンのモノクロビデオからトレーニングしても、シャープで正確な深度マップを予測できる。
論文 参考訳(メタデータ) (2022-11-07T16:17:47Z) - Gradient-based Uncertainty for Monocular Depth Estimation [5.7575052885308455]
単眼深度推定では、移動物体や反射材料のような画像コンテキストの乱れは、容易に誤った予測につながる。
本稿では,すでに訓練済みで固定された深度推定モデルに対するポストホック不確実性推定手法を提案する。
提案手法は,ニューラルネットワークの再トレーニングを必要とせずに,KITTI と NYU Depth V2 ベンチマークにおける最先端の不確実性推定結果を実現する。
論文 参考訳(メタデータ) (2022-08-03T12:21:02Z) - Robust Depth Completion with Uncertainty-Driven Loss Functions [60.9237639890582]
本研究では,不確実性による損失関数を導入し,深度補修の堅牢性を改善し,深度補修の不確実性に対処する。
提案手法は,KITTI深度評価ベンチマークでテストされ,MAE, IMAE, IRMSEの計測値を用いて最先端のロバスト性性能を達成した。
論文 参考訳(メタデータ) (2021-12-15T05:22:34Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3次元物体検出は、運転支援システムなどの様々な実用用途で必要とされる重要な機能である。
双眼視やLiDARに頼っている従来の設定に比べて、経済的な解決策として単眼3D検出が注目されているが、それでも満足のいく結果が得られていない。
本稿ではまず,この問題に関する系統的研究を行い,現在の単分子3次元検出問題をインスタンス深度推定問題として単純化できることを考察する。
論文 参考訳(メタデータ) (2021-07-29T16:30:33Z) - Variational Monocular Depth Estimation for Reliability Prediction [12.951621755732544]
教師付き学習手法の代替として,単眼深度推定のための自己教師付き学習が広く研究されている。
従来はモデル構造の変更による深度推定の精度向上に成功している。
本稿では, 単眼深度推定のための変分モデルを理論的に定式化し, 推定深度画像の信頼性を推定する。
論文 参考訳(メタデータ) (2020-11-24T06:23:51Z) - A New Distributional Ranking Loss With Uncertainty: Illustrated in
Relative Depth Estimation [0.0]
単一画像からの相対深度推定問題に対する新しいアプローチを提案する。
奥行きスコアを直接回帰する代わりに、この問題を深さを超える確率分布の推定として定式化する。
本モデルでは,より近い画素の深さよりも近い画素の深さの確率を高めるために,新たなランキング損失である分布損失を提案する。
論文 参考訳(メタデータ) (2020-10-14T13:47:18Z) - Adaptive confidence thresholding for monocular depth estimation [83.06265443599521]
本稿では,自己教師付ステレオマッチング法から生成されたステレオ画像の擬似地上真実深度マップを利用する新しい手法を提案する。
擬似地底深度マップの信頼度マップを推定し、不正確な擬似地底深度マップによる性能劣化を緩和する。
実験結果から, 最先端の単分子深度推定法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-09-27T13:26:16Z) - AcED: Accurate and Edge-consistent Monocular Depth Estimation [0.0]
単一画像深度推定は難しい問題である。
完全に微分可能な順序回帰を定式化し、エンドツーエンドでネットワークを訓練する。
深度補正のための画素ごとの信頼度マップ計算も提案した。
論文 参考訳(メタデータ) (2020-06-16T15:21:00Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
カラービデオから多フレーム深度を推定する新しい学習手法を提案する。
本手法は深度推定精度において最先端の手法より優れる。
論文 参考訳(メタデータ) (2020-04-02T07:10:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。