DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations
- URL: http://arxiv.org/abs/2502.06029v2
- Date: Fri, 28 Feb 2025 06:07:51 GMT
- Title: DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations
- Authors: Krishna Sri Ipsit Mantri, Carola-Bibiane Schönlieb, Bruno Ribeiro, Chaim Baskin, Moshe Eliasof,
- Abstract summary: DiTASK is a novel approach to efficiently adapt pre-trained Vision Transformers for multiple tasks.<n>It maintains pre-trained representations by preserving weight matrix singular vectors, while enabling task-specific adaptations.<n>Our experiments on PASCAL MTL and NYUD show that DiTASK achieves state-of-the-art performance across four dense prediction tasks.
- Score: 21.06471370479668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained Vision Transformers now serve as powerful tools for computer vision. Yet, efficiently adapting them for multiple tasks remains a challenge that arises from the need to modify the rich hidden representations encoded by the learned weight matrices, without inducing interference between tasks. Current parameter-efficient methods like LoRA, which apply low-rank updates, force tasks to compete within constrained subspaces, ultimately degrading performance. We introduce DiTASK a novel Diffeomorphic Multi-Task Fine-Tuning approach that maintains pre-trained representations by preserving weight matrix singular vectors, while enabling task-specific adaptations through neural diffeomorphic transformations of the singular values. By following this approach, DiTASK enables both shared and task-specific feature modulations with minimal added parameters. Our theoretical analysis shows that DITASK achieves full-rank updates during optimization, preserving the geometric structure of pre-trained features, and establishing a new paradigm for efficient multi-task learning (MTL). Our experiments on PASCAL MTL and NYUD show that DiTASK achieves state-of-the-art performance across four dense prediction tasks, using 75% fewer parameters than existing methods. Our code is available [here](https://github.com/ipsitmantri/DiTASK).
Related papers
- Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning [59.001091197106085]
Multi-Task Learning (MTL) for Vision Transformer aims at enhancing the model capability by tackling multiple tasks simultaneously.<n>Most recent works have predominantly focused on designing Mixture-of-Experts (MoE) structures and in tegrating Low-Rank Adaptation (LoRA) to efficiently perform multi-task learning.<n>We propose a novel approach dubbed Efficient Multi-Task Learning (EMTAL) by transforming a pre-trained Vision Transformer into an efficient multi-task learner.
arXiv Detail & Related papers (2025-01-12T17:41:23Z) - TADFormer : Task-Adaptive Dynamic Transformer for Efficient Multi-Task Learning [14.888918165109244]
Task-Efficient Dynamic transFormer, TADFormer, is a novel PEFT framework that performs task-aware feature adaptation in the fine-grained manner.<n>TADFormer achieves higher accuracy in dense scene understanding tasks, while reducing the number of trainable parameters by up to 8.4 times.
arXiv Detail & Related papers (2025-01-08T05:35:07Z) - Optimizing Dense Visual Predictions Through Multi-Task Coherence and Prioritization [7.776434991976473]
Multi-Task Learning (MTL) involves the concurrent training of multiple tasks.<n>We propose an advanced MTL model specifically designed for dense vision tasks.
arXiv Detail & Related papers (2024-12-04T10:05:47Z) - Multi-Task Model Merging via Adaptive Weight Disentanglement [69.7292615212444]
We introduce an Adaptive Weight Disentanglement method for model merging.<n>We successfully extract redundant vectors, and after their subtraction, the task vectors retain robust performance.
arXiv Detail & Related papers (2024-11-27T20:08:55Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
Dynamic Tuning (DyT) is a novel approach to improve both parameter and inference efficiency for ViT adaptation.
DyT achieves superior performance compared to existing PEFT methods while evoking only 71% of their FLOPs on the VTAB-1K benchmark.
arXiv Detail & Related papers (2024-03-18T14:05:52Z) - Hierarchical Side-Tuning for Vision Transformers [33.536948382414316]
Fine-tuning pre-trained Vision Transformers (ViTs) has showcased significant promise in enhancing visual recognition tasks.
PETL has shown potential for achieving high performance with fewer parameter updates compared to full fine-tuning.
This paper introduces Hierarchical Side-Tuning (HST), an innovative PETL method facilitating the transfer of ViT models to diverse downstream tasks.
arXiv Detail & Related papers (2023-10-09T04:16:35Z) - AdaTask: A Task-aware Adaptive Learning Rate Approach to Multi-task
Learning [19.201899503691266]
We measure the task dominance degree of a parameter by the total updates of each task on this parameter.
We propose a Task-wise Adaptive learning rate approach, AdaTask, to separate the emphaccumulative gradients and hence the learning rate of each task.
Experiments on computer vision and recommender system MTL datasets demonstrate that AdaTask significantly improves the performance of dominated tasks.
arXiv Detail & Related papers (2022-11-28T04:24:38Z) - Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision
Tasks [36.34331439747556]
We propose Polyhistor and Polyhistor-Lite to share information across different tasks with a few trainable parameters.
Specifically, Polyhistor achieves competitive accuracy compared to the state-of-the-art while only using 10% of their trainable parameters.
arXiv Detail & Related papers (2022-10-07T00:25:02Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Parameter-Efficient Transfer Learning with Diff Pruning [108.03864629388404]
diff pruning is a simple approach to enable parameter-efficient transfer learning within the pretrain-finetune framework.
We find that models finetuned with diff pruning can match the performance of fully finetuned baselines on the GLUE benchmark.
arXiv Detail & Related papers (2020-12-14T12:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.