TADFormer : Task-Adaptive Dynamic Transformer for Efficient Multi-Task Learning
- URL: http://arxiv.org/abs/2501.04293v1
- Date: Wed, 08 Jan 2025 05:35:07 GMT
- Title: TADFormer : Task-Adaptive Dynamic Transformer for Efficient Multi-Task Learning
- Authors: Seungmin Baek, Soyul Lee, Hayeon Jo, Hyesong Choi, Dongbo Min,
- Abstract summary: Task-Efficient Dynamic transFormer, TADFormer, is a novel PEFT framework that performs task-aware feature adaptation in the fine-grained manner.
TADFormer achieves higher accuracy in dense scene understanding tasks, while reducing the number of trainable parameters by up to 8.4 times.
- Score: 14.888918165109244
- License:
- Abstract: Transfer learning paradigm has driven substantial advancements in various vision tasks. However, as state-of-the-art models continue to grow, classical full fine-tuning often becomes computationally impractical, particularly in multi-task learning (MTL) setup where training complexity increases proportional to the number of tasks. Consequently, recent studies have explored Parameter-Efficient Fine-Tuning (PEFT) for MTL architectures. Despite some progress, these approaches still exhibit limitations in capturing fine-grained, task-specific features that are crucial to MTL. In this paper, we introduce Task-Adaptive Dynamic transFormer, termed TADFormer, a novel PEFT framework that performs task-aware feature adaptation in the fine-grained manner by dynamically considering task-specific input contexts. TADFormer proposes the parameter-efficient prompting for task adaptation and the Dynamic Task Filter (DTF) to capture task information conditioned on input contexts. Experiments on the PASCAL-Context benchmark demonstrate that the proposed method achieves higher accuracy in dense scene understanding tasks, while reducing the number of trainable parameters by up to 8.4 times when compared to full fine-tuning of MTL models. TADFormer also demonstrates superior parameter efficiency and accuracy compared to recent PEFT methods.
Related papers
- DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations [21.06471370479668]
We introduce DiTASK, a novel approach to efficiently adapt pre-trained Vision Transformers for multiple tasks.
Our theoretical analysis shows that DiTASK achieves full-rank updates during optimization, preserving the geometric structure of pre-trained features.
Our experiments on PASCAL MTL and NYUD show that DiTASK achieves state-of-the-art performance across four dense prediction tasks, using 75% fewer parameters than existing methods.
arXiv Detail & Related papers (2025-02-09T21:05:11Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.
We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.
We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - Beyond Task Vectors: Selective Task Arithmetic Based on Importance Metrics [0.0]
This paper introduces textbfunderlineSelective textbfunderlineTask textbfunderlineArithmetic underlinetextbf(STA), a training-free framework designed to enhance multi-task performance through task-specific parameter fusion.
Experimental results demonstrate that STA achieves superior multi-task performance across benchmarks and excellent performance in task forgetting.
arXiv Detail & Related papers (2024-11-25T06:59:16Z) - AdapMTL: Adaptive Pruning Framework for Multitask Learning Model [5.643658120200373]
AdapMTL is an adaptive pruning framework for multitask models.
It balances sparsity allocation and accuracy performance across multiple tasks.
It showcases superior performance compared to state-of-the-art pruning methods.
arXiv Detail & Related papers (2024-08-07T17:19:15Z) - MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-Task Learning [1.4396109429521227]
Adapting models pre-trained on large-scale datasets to a variety of downstream tasks is a common strategy in deep learning.
parameter-efficient fine-tuning methods have emerged as a promising way to adapt pre-trained models to different tasks while training only a minimal number of parameters.
We introduce MTLoRA, a novel framework for parameter-efficient training of Multi-Task Learning models.
arXiv Detail & Related papers (2024-03-29T17:43:58Z) - VMT-Adapter: Parameter-Efficient Transfer Learning for Multi-Task Dense
Scene Understanding [6.816428690763012]
A standard approach to leverage large-scale pre-trained models is to fine-tune all model parameters for downstream tasks.
We propose VMT-Adapter, which shares knowledge from multiple tasks to enhance cross-task interaction.
We also propose VMT-Adapter-Lite, which further reduces the trainable parameters by learning shared parameters between down- and up-projections.
arXiv Detail & Related papers (2023-12-14T08:25:04Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Hyper-Decision Transformer for Efficient Online Policy Adaptation [66.91294935068957]
We propose a new framework, called Hyper-Decision Transformer (HDT), that can generalize to novel tasks from a handful of demonstrations.
We find that with a single expert demonstration and fine-tuning only 0.5% of DT parameters, HDT adapts faster to unseen tasks than fine-tuning the whole DT model.
arXiv Detail & Related papers (2023-04-17T17:59:32Z) - Attentional Mixtures of Soft Prompt Tuning for Parameter-efficient
Multi-task Knowledge Sharing [53.399742232323895]
ATTEMPT is a new modular, multi-task, and parameter-efficient language model (LM) tuning approach.
It combines knowledge transferred across different tasks via a mixture of soft prompts while keeping original LM unchanged.
It is parameter-efficient (e.g., updates 1,600 times fewer parameters than fine-tuning) and enables multi-task learning and flexible extensions.
arXiv Detail & Related papers (2022-05-24T10:48:33Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.