A Conditional Tabular GAN-Enhanced Intrusion Detection System for Rare Attacks in IoT Networks
- URL: http://arxiv.org/abs/2502.06031v1
- Date: Sun, 09 Feb 2025 21:13:11 GMT
- Title: A Conditional Tabular GAN-Enhanced Intrusion Detection System for Rare Attacks in IoT Networks
- Authors: Safaa Menssouri, El Mehdi Amhoud,
- Abstract summary: Internet of things (IoT) networks, boosted by 6G technology, are transforming various industries.
Their widespread adoption introduces significant security risks, particularly in detecting rare but potentially damaging cyber-attacks.
Traditional IDS often struggle with detecting rare attacks due to severe class imbalances in IoT data.
- Score: 1.1970409518725493
- License:
- Abstract: Internet of things (IoT) networks, boosted by 6G technology, are transforming various industries. However, their widespread adoption introduces significant security risks, particularly in detecting rare but potentially damaging cyber-attacks. This makes the development of robust IDS crucial for monitoring network traffic and ensuring their safety. Traditional IDS often struggle with detecting rare attacks due to severe class imbalances in IoT data. In this paper, we propose a novel two-stage system called conditional tabular generative synthetic minority data generation with deep neural network (CTGSM-DNN). In the first stage, a conditional tabular generative adversarial network (CTGAN) is employed to generate synthetic data for rare attack classes. In the second stage, the SMOTEENN method is applied to improve dataset quality. The full study was conducted using the CSE-CIC-IDS2018 dataset, and we assessed the performance of the proposed IDS using different evaluation metrics. The experimental results demonstrated the effectiveness of the proposed multiclass classifier, achieving an overall accuracy of 99.90% and 80% accuracy in detecting rare attacks.
Related papers
- Learning in Multiple Spaces: Few-Shot Network Attack Detection with Metric-Fused Prototypical Networks [47.18575262588692]
We propose a novel Multi-Space Prototypical Learning framework tailored for few-shot attack detection.
By leveraging Polyak-averaged prototype generation, the framework stabilizes the learning process and effectively adapts to rare and zero-day attacks.
Experimental results on benchmark datasets demonstrate that MSPL outperforms traditional approaches in detecting low-profile and novel attack types.
arXiv Detail & Related papers (2024-12-28T00:09:46Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices make it challenging to deploy conventional computing-based IDSs.
We propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset.
arXiv Detail & Related papers (2024-06-04T20:36:21Z) - Strengthening Network Intrusion Detection in IoT Environments with Self-Supervised Learning and Few Shot Learning [1.0678175996321808]
The Internet of Things (IoT) has been introduced as a breakthrough technology that integrates intelligence into everyday objects.
As the IoT networks grow and expand, they become more susceptible to cybersecurity attacks.
This paper introduces a novel intrusion detection approach designed to address these challenges.
arXiv Detail & Related papers (2024-06-04T06:30:22Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
Our proposed model consists on a combination of convolutional neural network (CNN) and long short-term memory (LSTM) deep learning (DL) models.
This fusion facilitates the detection and classification of IoT traffic into binary categories, benign and malicious activities.
Our proposed model achieves an accuracy rate of 98.42%, accompanied by a minimal loss of 0.0275.
arXiv Detail & Related papers (2024-05-28T22:12:15Z) - usfAD Based Effective Unknown Attack Detection Focused IDS Framework [3.560574387648533]
Internet of Things (IoT) and Industrial Internet of Things (IIoT) have led to an increasing range of cyber threats.
For more than a decade, researchers have delved into supervised machine learning techniques to develop Intrusion Detection System (IDS)
IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks.
We propose two strategies for semi-supervised learning based IDS where training samples of attacks are not required.
arXiv Detail & Related papers (2024-03-17T11:49:57Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
Internet of Things (IoT) networks contain benign traffic far more than abnormal traffic, with some rare attacks.
Most existing studies have been focused on sacrificing the detection rate of the majority class in order to improve the detection rate of the minority class.
We propose a lightweight framework named S2CGAN-IDS to expand the number of minority categories in both data space and feature space.
arXiv Detail & Related papers (2023-06-06T14:19:23Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - DRL-GAN: A Hybrid Approach for Binary and Multiclass Network Intrusion
Detection [2.7122540465034106]
Intrusion detection systems (IDS) are an essential security technology for detecting these attacks.
We implement a novel hybrid technique using synthetic data produced by a Generative Adversarial Network (GAN) to use as input for training a Deep Reinforcement Learning (DRL) model.
Our findings demonstrate that training the DRL on specific synthetic datasets can result in better performance in correctly classifying minority classes over training on the true imbalanced dataset.
arXiv Detail & Related papers (2023-01-05T19:51:24Z) - Robust Attack Detection Approach for IIoT Using Ensemble Classifier [0.0]
The objective is to develop a two-phase anomaly detection model to enhance the reliability of an IIoT network.
The proposed model is tested on standard IoT attack outliers such as WUSTL_IIOT-2018, N_BaIoT, and Bot_IoT.
The results also demonstrate that the proposed model outperforms traditional techniques and thus improves the reliability of an IIoT network.
arXiv Detail & Related papers (2021-01-30T07:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.