論文の概要: Fine-Tuning Federated Learning-Based Intrusion Detection Systems for Transportation IoT
- arxiv url: http://arxiv.org/abs/2502.06099v1
- Date: Mon, 10 Feb 2025 02:12:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:30:37.445279
- Title: Fine-Tuning Federated Learning-Based Intrusion Detection Systems for Transportation IoT
- Title(参考訳): 交通用IoT用ファインチューニングフェデレーションベース侵入検知システム
- Authors: Robert Akinie, Nana Kankam Brym Gyimah, Mansi Bhavsar, John Kelly,
- Abstract要約: フェデレートラーニング(FL)は、分散エッジデバイス上でIDSモデルの分散トレーニングを可能にするための有望な方法として登場した。
本稿では,エッジデバイス上での軽量な微調整を実現しつつ,事前学習を中央サーバにオフロードするハイブリッドサーバエッジFLフレームワークを提案する。
このアプローチはメモリ使用量を最大42%削減し、トレーニング時間を最大75%削減し、競合IDSの精度を最大99.2%向上させる。
- 参考スコア(独自算出の注目度): 0.3333209898517398
- License:
- Abstract: The rapid advancement of machine learning (ML) and on-device computing has revolutionized various industries, including transportation, through the development of Connected and Autonomous Vehicles (CAVs) and Intelligent Transportation Systems (ITS). These technologies improve traffic management and vehicle safety, but also introduce significant security and privacy concerns, such as cyberattacks and data breaches. Traditional Intrusion Detection Systems (IDS) are increasingly inadequate in detecting modern threats, leading to the adoption of ML-based IDS solutions. Federated Learning (FL) has emerged as a promising method for enabling the decentralized training of IDS models on distributed edge devices without sharing sensitive data. However, deploying FL-based IDS in CAV networks poses unique challenges, including limited computational and memory resources on edge devices, competing demands from critical applications such as navigation and safety systems, and the need to scale across diverse hardware and connectivity conditions. To address these issues, we propose a hybrid server-edge FL framework that offloads pre-training to a central server while enabling lightweight fine-tuning on edge devices. This approach reduces memory usage by up to 42%, decreases training times by up to 75%, and achieves competitive IDS accuracy of up to 99.2%. Scalability analyses further demonstrates minimal performance degradation as the number of clients increase, highlighting the framework's feasibility for CAV networks and other IoT applications.
- Abstract(参考訳): 機械学習(ML)とオンデバイスコンピューティングの急速な進歩は、コネクテッド・アンド・オートモービルズ(CAV)とインテリジェント・トランスポーテーション・システムズ(ITS)の開発を通じて、輸送を含む様々な産業に革命をもたらした。
これらの技術は交通管理と車両の安全性を向上させるだけでなく、サイバー攻撃やデータ漏洩など、セキュリティとプライバシに関する重大な懸念ももたらしている。
従来の侵入検知システム(IDS)は、現代の脅威を検出するのに不適切であり、MLベースのIDSソリューションが採用されている。
フェデレートラーニング(FL)は、機密データを共有することなく、分散エッジデバイス上でIDSモデルの分散トレーニングを可能にするための有望な方法として登場した。
しかし、FLベースのIDSをCAVネットワークにデプロイすることは、エッジデバイスに限られた計算資源やメモリリソース、ナビゲーションや安全システムといった重要なアプリケーションからの競合要求、様々なハードウェアや接続条件にまたがるスケールの必要性など、ユニークな課題を生んでいる。
これらの問題に対処するために,エッジデバイス上での軽量な微調整を実現しつつ,事前学習を中央サーバにオフロードするハイブリッドサーバエッジFLフレームワークを提案する。
このアプローチはメモリ使用量を最大42%削減し、トレーニング時間を最大75%削減し、競合IDSの精度を最大99.2%向上させる。
スケーラビリティ分析はさらに、クライアントの数が増えるにつれてパフォーマンスの低下を最小限にし、CAVネットワークや他のIoTアプリケーションに対するフレームワークの可能性を強調している。
関連論文リスト
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - Efficient Federated Intrusion Detection in 5G ecosystem using optimized BERT-based model [0.7100520098029439]
5Gは高度なサービスを提供し、IoT(Internet of Things)内のインテリジェントトランスポート、コネクテッドヘルスケア、スマートシティなどのアプリケーションをサポートする。
これらの進歩は、ますます高度なサイバー攻撃を伴う、重大なセキュリティ上の課題をもたらす。
本稿では,連合学習と大規模言語モデル(LLM)を用いた頑健な侵入検知システム(IDS)を提案する。
論文 参考訳(メタデータ) (2024-09-28T15:56:28Z) - FedMADE: Robust Federated Learning for Intrusion Detection in IoT Networks Using a Dynamic Aggregation Method [7.842334649864372]
さまざまな分野にわたるIoT(Internet of Things)デバイスは、深刻なネットワークセキュリティ上の懸念をエスカレートしている。
サイバー攻撃分類のための従来の機械学習(ML)ベースの侵入検知システム(IDS)は、IoTデバイスからトラフィック分析のための集中サーバへのデータ送信を必要とし、深刻なプライバシー上の懸念を引き起こす。
我々はFedMADEという新しい動的アグリゲーション手法を紹介した。この手法はデバイスをトラフィックパターンによってクラスタリングし、その全体的なパフォーマンスに対する貢献に基づいてローカルモデルを集約する。
論文 参考訳(メタデータ) (2024-08-13T18:42:34Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
日々の生活にIoT(Internet of Things)アプリケーションを統合することで、データトラフィックが急増し、重大なセキュリティ上の問題が発生しています。
本稿では、コストと精度のバランスの取れたトレードオフを見つけるための新しい手法を導入することにより、エッジレベルでのMLベースのIDSの有効性を向上させることに焦点を当てる。
論文 参考訳(メタデータ) (2024-04-29T21:26:18Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Sparse Federated Training of Object Detection in the Internet of
Vehicles [13.864554148921826]
物体検出は、IoV(Internet of Vehicles)の鍵となる技術の一つである
現在のオブジェクト検出方法は、主に集中的な深層トレーニングに基づいており、エッジデバイスが取得したセンシティブなデータをサーバにアップロードする必要がある。
そこで本研究では,よく訓練されたローカルモデルを中央サーバで共有する,フェデレート学習ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-07T08:58:41Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。