Circuit-tuning: A Mechanistic Approach for Identifying Parameter Redundancy and Fine-tuning Neural Networks
- URL: http://arxiv.org/abs/2502.06106v1
- Date: Mon, 10 Feb 2025 02:35:53 GMT
- Title: Circuit-tuning: A Mechanistic Approach for Identifying Parameter Redundancy and Fine-tuning Neural Networks
- Authors: Yueyan Li, Caixia Yuan, Xiaojie Wang,
- Abstract summary: We develop an interpretable method for fine-tuning and reveal the mechanism behind learning.
We first propose the concept of node redundancy as an extension of intrinsic dimension and explain the idea behind circuit discovery from a fresh view.
Based on the theory, we propose circuit-tuning, a two-stage algorithm that iteratively performs circuit discovery to mask out irrelevant edges and updates the remaining parameters responsible for a specific task.
- Score: 8.583130802344447
- License:
- Abstract: The study of mechanistic interpretability aims to reverse-engineer a model to explain its behaviors. While recent studies have focused on the static mechanism of a certain behavior, the training dynamics inside a model remain to be explored. In this work, we develop an interpretable method for fine-tuning and reveal the mechanism behind learning. We first propose the concept of node redundancy as an extension of intrinsic dimension and explain the idea behind circuit discovery from a fresh view. Based on the theory, we propose circuit-tuning, a two-stage algorithm that iteratively performs circuit discovery to mask out irrelevant edges and updates the remaining parameters responsible for a specific task. Experiments show that our method not only improves performance on a wide range of tasks but is also scalable while preserving general capabilities. We visualize and analyze the circuits before, during, and after fine-tuning, providing new insights into the self-organization mechanism of a neural network in the learning process.
Related papers
- Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis [37.37040454356059]
This paper aims to provide an in-depth interpretation of the fine-tuning process through circuit analysis.
We identify circuits at various checkpoints during fine-tuning and examine the interplay between circuit analysis, fine-tuning methods, and task complexities.
arXiv Detail & Related papers (2025-02-17T13:59:41Z) - Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Unraveling Feature Extraction Mechanisms in Neural Networks [10.13842157577026]
We propose a theoretical approach based on Neural Tangent Kernels (NTKs) to investigate such mechanisms.
We reveal how these models leverage statistical features during gradient descent and how they are integrated into final decisions.
We find that while self-attention and CNN models may exhibit limitations in learning n-grams, multiplication-based models seem to excel in this area.
arXiv Detail & Related papers (2023-10-25T04:22:40Z) - Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes [0.0]
We propose utilizing the framework of processes, which has been underutilized thus far.
We focus solely on activation frequency, leveraging neuroscience techniques used for real neuron spike trains.
We derive parameters describing activation patterns in each network, revealing consistent differences across architectures and training sets.
arXiv Detail & Related papers (2023-08-01T22:12:30Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Understanding Self-Predictive Learning for Reinforcement Learning [61.62067048348786]
We study the learning dynamics of self-predictive learning for reinforcement learning.
We propose a novel self-predictive algorithm that learns two representations simultaneously.
arXiv Detail & Related papers (2022-12-06T20:43:37Z) - LQResNet: A Deep Neural Network Architecture for Learning Dynamic
Processes [9.36739413306697]
A data-driven approach, namely operator inference framework, models a dynamic process.
We suggest combining the operator inference with certain deep neural network approaches to infer the unknown nonlinear dynamics of the system.
arXiv Detail & Related papers (2021-03-03T08:19:43Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task.
This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks.
arXiv Detail & Related papers (2020-11-18T18:52:08Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
We present a formal analysis of how self-attention affects gradient propagation in recurrent networks.
We prove that it mitigates the problem of vanishing gradients when trying to capture long-term dependencies.
We propose a relevancy screening mechanism that allows for a scalable use of sparse self-attention with recurrence.
arXiv Detail & Related papers (2020-06-16T19:24:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.