論文の概要: Task-driven Layerwise Additive Activation Intervention
- arxiv url: http://arxiv.org/abs/2502.06115v1
- Date: Mon, 10 Feb 2025 02:49:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:34:56.226855
- Title: Task-driven Layerwise Additive Activation Intervention
- Title(参考訳): Task-driven Layerwise Additive Activation Intervention
- Authors: Hieu Trung Nguyen, Bao Nguyen, Binh Nguyen, Viet Anh Nguyen,
- Abstract要約: 現代言語モデル(LM)は自然言語処理(NLP)において著しく高度な生成モデルを持つ
本稿では, 介入プロセスの最適化を行うレイヤワイド・アダプティブ・アクティベーション・インタベーション・インタプリタ・フレームワークを提案する。
我々は、様々なデータセット上でフレームワークをベンチマークし、事前訓練されたLMの精度と競合する介入ベースラインの改善を示す。
- 参考スコア(独自算出の注目度): 12.152228552335798
- License:
- Abstract: Modern language models (LMs) have significantly advanced generative modeling in natural language processing (NLP). Despite their success, LMs often struggle with adaptation to new contexts in real-time applications. A promising approach to task adaptation is activation intervention, which steers the LMs' generation process by identifying and manipulating the activations. However, existing interventions are highly dependent on heuristic rules or require many prompt inputs to determine effective interventions. This paper proposes a layer-wise additive activation intervention framework that optimizes the intervention process, thus enhancing the sample efficiency. We benchmark our framework on various datasets, demonstrating improvements in the accuracy of pre-trained LMs and competing intervention baselines.
- Abstract(参考訳): 現代の言語モデル (LM) は自然言語処理 (NLP) においてかなり高度な生成モデルを持つ。
その成功にもかかわらず、LMはリアルタイムアプリケーションにおける新しいコンテキストへの適応に苦戦することが多い。
タスク適応への有望なアプローチはアクティベーション介入であり、アクティベーションの特定と操作によってLMの生成プロセスを制御している。
しかし、既存の介入はヒューリスティックなルールに大きく依存しているか、効果的な介入を決定するために多くのインプットを必要とする。
本稿では, 干渉処理を最適化し, 試料効率を向上するレイヤワイド付加活性化介入フレームワークを提案する。
我々は、様々なデータセット上でフレームワークをベンチマークし、事前訓練されたLMの精度と競合する介入ベースラインの改善を示す。
関連論文リスト
- Semantics-Adaptive Activation Intervention for LLMs via Dynamic Steering Vectors [8.761404991620285]
大規模言語モデル(LLM)の行動を修正するための効果的かつ経済的手法として活性化介入が出現した。
本稿では,モデルアクティベーションを推論時に介入するための動的ステアリングベクトルを構成する新しい手法であるSemantics-Adaptive Dynamic Intervention (SADI)を提案する。
実験結果から,SADIが確立したベースラインをかなりのマージンで上回り,トレーニングなしでのタスク性能が向上した。
論文 参考訳(メタデータ) (2024-10-16T06:58:49Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
マルチビヘイビアシークエンシャルレコメンデーションに適した,最初の事前学習および迅速な学習パラダイムであるDPCPLを提案する。
事前学習段階において,複数の時間スケールでノイズを除去する新しい行動マイナ (EBM) を提案する。
次に,提案するCustomized Prompt Learning (CPL)モジュールを用いて,事前学習したモデルを高効率にチューニングすることを提案する。
論文 参考訳(メタデータ) (2024-08-21T06:48:38Z) - HAAP: Vision-context Hierarchical Attention Autoregressive with Adaptive Permutation for Scene Text Recognition [17.412985505938508]
内部言語モデル(LM)に基づく手法は、外部のLMに基づく手法で条件独立性に起因する誤り訂正を解決するために置換言語モデリング(PLM)を用いる。
本稿では,アダプティブ・パーミューテーション(Adaptive Permutation, HAAP)を用いた階層的注意自己回帰モデルを提案する。
論文 参考訳(メタデータ) (2024-05-15T06:41:43Z) - From Robustness to Improved Generalization and Calibration in Pre-trained Language Models [0.0]
本稿では,前訓練言語モデル(PLM)の性能向上において,ジャコビアン正規化とヘッセン正規化によって達成される表現の滑らかさの役割について検討する。
PLM中間表現におけるヤコビ行列とヘッセン行列のノルムを最小化する新しい二相正規化手法であるジャコビウスを導入する。
GLUEベンチマークを用いて評価したところ, JacHess は PLM の領域内一般化とキャリブレーションを大幅に改善することがわかった。
論文 参考訳(メタデータ) (2024-03-31T18:08:37Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
我々は,無害アライメントのためのクロスモデルガイダンスを利用する新しい推論時間アライメント手法であるtextbfInferAligner を開発した。
実験結果から,本手法はファイナンス,医学,数学の分野特化モデルに極めて効果的に適用可能であることが示された。
これは有害な命令とジェイルブレイク攻撃の両方のアタック成功率(ASR)を著しく低下させ、下流タスクではほとんど変化のないパフォーマンスを維持している。
論文 参考訳(メタデータ) (2024-01-20T10:41:03Z) - Dynamic Corrective Self-Distillation for Better Fine-Tuning of
Pretrained Models [0.9217021281095907]
プレトレーニング言語モデル(PLM)の伝達学習過程において発生する攻撃的微調整の問題に対処する。
従来の機械学習における適応的強化法に着想を得て,PLMの微調整を改善するための効果的な動的補正自己蒸留手法を提案する。
本手法は,各イテレーションにおいて,各データポイントに割り当てられた重みを動的に調整することにより,学生モデルが積極的に適応し,自己補正を行う自己蒸留機構を実行することを含む。
論文 参考訳(メタデータ) (2023-12-12T07:26:36Z) - Effective Unsupervised Domain Adaptation with Adversarially Trained
Language Models [54.569004548170824]
注意的なマスキング戦略は、マスキングされた言語モデルの知識ギャップを橋渡しできることを示す。
本稿では,これらのトークンを逆さまにマスキングすることで効果的なトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-10-05T01:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。