An Appearance Defect Detection Method for Cigarettes Based on C-CenterNet
- URL: http://arxiv.org/abs/2502.06119v1
- Date: Mon, 10 Feb 2025 03:12:49 GMT
- Title: An Appearance Defect Detection Method for Cigarettes Based on C-CenterNet
- Authors: Hongyu Liu, Guowu Yuan, Lei Yang, Kunxiao Liu, Hao Zhou,
- Abstract summary: A cigarette appearance defect detection method based on C-CenterNet is proposed.
This detector uses keypoint estimation to locate center points and regresses all other defect properties.
Compared with the original CenterNet model, the model's success rate is increased by 6.14%.
- Score: 17.31454256765229
- License:
- Abstract: Due to the poor adaptability of traditional methods in the cigarette detection task on the automatic cigarette production line, it is difficult to accurately identify whether a cigarette has defects and the types of defects; thus, a cigarette appearance defect detection method based on C-CenterNet is proposed. This detector uses keypoint estimation to locate center points and regresses all other defect properties. Firstly, Resnet50 is used as the backbone feature extraction network, and the convolutional block attention mechanism (CBAM) is introduced to enhance the network's ability to extract effective features and reduce the interference of non-target information. At the same time, the feature pyramid network is used to enhance the feature extraction of each layer. Then, deformable convolution is used to replace part of the common convolution to enhance the learning ability of different shape defects. Finally, the activation function ACON (ActivateOrNot) is used instead of the ReLU activation function, and the activation operation of some neurons is adaptively selected to improve the detection accuracy of the network. The experimental results are mainly acquired via the mean Average Precision (mAP). The experimental results show that the mAP of the C-CenterNet model applied in the cigarette appearance defect detection task is 95.01%. Compared with the original CenterNet model, the model's success rate is increased by 6.14%, so it can meet the requirements of precision and adaptability in cigarette detection tasks on the automatic cigarette production line.
Related papers
- Feature Selection for Network Intrusion Detection [3.7414804164475983]
We present a novel information-theoretic method that facilitates the exclusion of non-informative features when detecting network intrusions.
The proposed method is based on function approximation using a neural network, which enables a version of our approach that incorporates a recurrent layer.
arXiv Detail & Related papers (2024-11-18T14:25:55Z) - PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - CINFormer: Transformer network with multi-stage CNN feature injection
for surface defect segmentation [73.02218479926469]
We propose a transformer network with multi-stage CNN feature injection for surface defect segmentation.
CINFormer presents a simple yet effective feature integration mechanism that injects the multi-level CNN features of the input image into different stages of the transformer network in the encoder.
In addition, CINFormer presents a Top-K self-attention module to focus on tokens with more important information about the defects.
arXiv Detail & Related papers (2023-09-22T06:12:02Z) - Lightweight wood panel defect detection method incorporating attention
mechanism and feature fusion network [9.775181958901326]
We propose a lightweight wood panel defect detection method called YOLOv5-LW, which incorporates attention mechanisms and a feature fusion network.
The proposed method achieves a 92.8% accuracy rate, reduces the number of parameters by 27.78%, compresses computational volume by 41.25%, improves detection inference speed by 10.16%.
arXiv Detail & Related papers (2023-06-21T08:55:45Z) - Reduced Deep Convolutional Activation Features (R-DeCAF) in
Histopathology Images to Improve the Classification Performance for Breast
Cancer Diagnosis [0.0]
Breast cancer is the second most common cancer among women worldwide.
Deep convolutional neural networks (CNNs) are effective solutions.
The features extracted from activation layer of pre-trained CNNs are called deep convolutional activation features (DeCAF)
arXiv Detail & Related papers (2023-01-05T06:53:46Z) - A Fair Loss Function for Network Pruning [70.35230425589592]
We introduce the performance weighted loss function, a simple modified cross-entropy loss function that can be used to limit the introduction of biases during pruning.
Experiments using the CelebA, Fitzpatrick17k and CIFAR-10 datasets demonstrate that the proposed method is a simple and effective tool.
arXiv Detail & Related papers (2022-11-18T15:17:28Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - CPFN: Cascaded Primitive Fitting Networks for High-Resolution Point
Clouds [51.47100091540298]
We present Cascaded Primitive Fitting Networks (CPFN) that relies on an adaptive patch sampling network to assemble detection results of global and local primitive detection networks.
CPFN improves the state-of-the-art SPFN performance by 13-14% on high-resolution point cloud datasets and specifically improves the detection of fine-scale primitives by 20-22%.
arXiv Detail & Related papers (2021-08-31T23:27:33Z) - SCOP: Scientific Control for Reliable Neural Network Pruning [127.20073865874636]
This paper proposes a reliable neural network pruning algorithm by setting up a scientific control.
Redundant filters can be discovered in the adversarial process of different features.
Our method can reduce 57.8% parameters and 60.2% FLOPs of ResNet-101 with only 0.01% top-1 accuracy loss on ImageNet.
arXiv Detail & Related papers (2020-10-21T03:02:01Z) - Auto-Classifier: A Robust Defect Detector Based on an AutoML Head [2.685668802278155]
We show that the use of Convolutional Neural Networks achieves better results than traditional methods.
We also show that Auto-Classifier out-performs all other methods, by achieving 100% accuracy and 100% AUC results throughout all the datasets.
arXiv Detail & Related papers (2020-09-03T10:39:02Z) - Detection Method Based on Automatic Visual Shape Clustering for
Pin-Missing Defect in Transmission Lines [1.602803566465659]
Bolts are the most numerous fasteners in transmission lines and are prone to losing their split pins.
How to realize the automatic pin-missing defect detection for bolts in transmission lines so as to achieve timely and efficient trouble shooting is a difficult problem.
In this paper, an automatic detection model called Automatic Visual Shape Clustering Network (AVSCNet) for pin-missing defect is constructed.
arXiv Detail & Related papers (2020-01-17T10:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.