Multi-Scale PCB Defect Detection with YOLOv8 Network Improved via Pruning and Lightweight Network
- URL: http://arxiv.org/abs/2507.17176v1
- Date: Wed, 23 Jul 2025 03:47:00 GMT
- Title: Multi-Scale PCB Defect Detection with YOLOv8 Network Improved via Pruning and Lightweight Network
- Authors: Li Pingzhen, Xu Sheng, Chen Jing, Su Chengyue,
- Abstract summary: YOLOv8 is able to improve the detection speed and accuracy by optimizing the backbone network, the neck network and the detection head, the loss function and the adaptive pruning rate.<n>On the publicly available PCB defect dataset, mAP0.5 reaches 99.32% and mAP0.5:0.9 reaches 75.18%, which is 10.13% higher compared to YOLOv8n.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the high density of printed circuit board (PCB) design and the high speed of production, the traditional PCB defect detection model is difficult to take into account the accuracy and computational cost, and cannot meet the requirements of high accuracy and real-time detection of tiny defects. Therefore, in this paper, a multi-scale PCB defect detection method is improved with YOLOv8 using a comprehensive strategy of tiny target sensitivity strategy, network lightweighting and adaptive pruning, which is able to improve the detection speed and accuracy by optimizing the backbone network, the neck network and the detection head, the loss function and the adaptive pruning rate. Firstly, a Ghost-HGNetv2 structure with fewer parameters is used in the backbone network, and multilevel features are used to extract image semantic features to discover accurate defects. Secondly, we integrate C2f-Faster with small number of parameters in the neck section to enhance the ability of multi-level feature fusion. Next, in the Head part, we design a new GCDetect detection head, which allows the prediction of bounding boxes and categories to share the weights of GroupConv, and uses a small number of grouping convolutions to accomplish the regression and classification tasks, which significantly reduces the number of parameters while maintaining the accuracy of detection. We also design the Inner-MPDIoU boundary loss function to improve the detection and localization of tiny targets. Finally, the model was pruned by an optimized adaptive pruning rate to further reduce the complexity of the model. Experimental results show that the model exhibits advantages in terms of accuracy and speed. On the publicly available PCB defect dataset, mAP0.5 reaches 99.32% and mAP0.5:0.9 reaches 75.18%, which is 10.13% higher compared to YOLOv8n.
Related papers
- A Steel Surface Defect Detection Method Based on Lightweight Convolution Optimization [12.113216180751605]
This study proposes a detection framework based on deep learning, specifically YOLOv9s, to improve defect detection accuracy and model performance.<n> Experimental results demonstrate that the proposed model achieves higher accuracy and robustness in steel surface defect detection tasks compared to other methods.
arXiv Detail & Related papers (2025-07-21T10:30:38Z) - SNAT-YOLO: Efficient Cross-Layer Aggregation Network for Edge-Oriented Gangue Detection [1.7948767405202701]
Our model achieves a detection accuracy of 99.10% in coal gangue detection tasks.<n>It reduces the model size by 38%,the number of parameters by 41%,and the computational cost by 40%,while decreasing the average detection time per image by 1 ms.
arXiv Detail & Related papers (2025-02-09T18:39:35Z) - YOLO-pdd: A Novel Multi-scale PCB Defect Detection Method Using Deep Representations with Sequential Images [7.368447690189973]
This paper proposes a high-precision, robust, and real-time end-to-end method for PCB defect detection based on CNN.
We propose a novel approach combining YOLOv5 and multiscale modules for hierarchical residual-like connections.
Experiments on a large-scale PCB dataset demonstrate significant improvements in precision, recall, and F1-score compared to existing methods.
arXiv Detail & Related papers (2024-07-22T07:08:22Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
We develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure.
First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module.
The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T06:19:11Z) - Lightweight wood panel defect detection method incorporating attention
mechanism and feature fusion network [9.775181958901326]
We propose a lightweight wood panel defect detection method called YOLOv5-LW, which incorporates attention mechanisms and a feature fusion network.
The proposed method achieves a 92.8% accuracy rate, reduces the number of parameters by 27.78%, compresses computational volume by 41.25%, improves detection inference speed by 10.16%.
arXiv Detail & Related papers (2023-06-21T08:55:45Z) - Photovoltaic Panel Defect Detection Based on Ghost Convolution with
BottleneckCSP and Tiny Target Prediction Head Incorporating YOLOv5 [5.632384612137748]
This paper proposes an approach named Ghost convolution with BottleneckCSP and a tiny target prediction head for PV panel defect detection.
The BottleneckCSP module is introduced to add a prediction head for tiny target detection to alleviate tiny defect misses.
The proposed PV panel surface-defect detection network improves the mAP performance by at least 27.8%.
arXiv Detail & Related papers (2023-03-02T01:06:35Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
Spiking Neural Networks (SNNs) are a practical choice when the target hardware reaches the edge of computing.
We employ an Interval Arithmetic (IA) model to develop an exploration methodology that takes advantage of the capability of such a model to propagate the approximation error.
arXiv Detail & Related papers (2022-11-22T15:08:05Z) - Efficient Decoder-free Object Detection with Transformers [75.00499377197475]
Vision transformers (ViTs) are changing the landscape of object detection approaches.
We propose a decoder-free fully transformer-based (DFFT) object detector.
DFFT_SMALL achieves high efficiency in both training and inference stages.
arXiv Detail & Related papers (2022-06-14T13:22:19Z) - FasterPose: A Faster Simple Baseline for Human Pose Estimation [65.8413964785972]
We propose a design paradigm for cost-effective network with LR representation for efficient pose estimation, named FasterPose.
We study the training behavior of FasterPose, and formulate a novel regressive cross-entropy (RCE) loss function for accelerating the convergence.
Compared with the previously dominant network of pose estimation, our method reduces 58% of the FLOPs and simultaneously gains 1.3% improvement of accuracy.
arXiv Detail & Related papers (2021-07-07T13:39:08Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.