Exact solvability of the Gross-Pitaevskii equation for bound states subjected to general potentials
- URL: http://arxiv.org/abs/2502.06120v1
- Date: Mon, 10 Feb 2025 03:12:56 GMT
- Title: Exact solvability of the Gross-Pitaevskii equation for bound states subjected to general potentials
- Authors: M. MirĂ³n, E. SadurnĂ,
- Abstract summary: We show that the Gross-Pitaevskii (GP) equation can be mapped to a first-order non-autonomous dynamical system.
For the benefit of the reader, we comment on the difference between the integrability of a quantum system and the solvability of the wave equation.
- Score: 0.0
- License:
- Abstract: In this paper we present the analytic solution to the problem of bound states of the Gross-Pitaevskii (GP) equation in 1D and its properties, in the presence of external potentials in the form of finite square wells or attractive Dirac deltas, as well as stable solitons for repulsive defects. We show that the GP equation can be mapped to a first-order non-autonomous dynamical system, whose solutions can sometimes be written in terms of known functions. The formal solutions of this non-conservative system can be written with the help of Glauber-Trotter formulas or a series of ordered exponentials in the coordinate $x$. With this we illustrate how to solve any nonlinear problem based on a construction due to Mello and Kumar for the linear case (layered potentials). For the benefit of the reader, we comment on the difference between the integrability of a quantum system and the solvability of the wave equation.
Related papers
- Dunkl-Klein-Gordon Equation in Higher Dimensions [0.0]
We replace the standard partial derivatives in the Klein-Gordon equation with Dunkl derivatives.
We obtain exact analytical solutions for the eigenvalues and eigenfunctions of the Dunkl-Klein-Gordon equation in higher dimensions.
arXiv Detail & Related papers (2024-09-19T11:10:12Z) - Dunkl-Schrodinger Equation in Higher Dimension [0.0]
This paper presents analytical solutions for eigenvalues and eigenfunctions of the Schr"odinger equation in higher dimensions.
Two fundamental quantum mechanical problems are examined in their exact forms.
The behavior of the energy eigenvalue functions are illustrated graphically with the reduced probability densities.
arXiv Detail & Related papers (2024-09-19T11:03:25Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - The Schr\"odinger equation for the Rosen-Morse type potential revisited
with applications [0.0]
We rigorously solve the time-independent Schr"odinger equation for the Rosen-Morse type potential.
The resolution of this problem is used to show that the kinks of the non-linear Klein-Gordon equation with $varphi2p+2$ type potentials are stable.
arXiv Detail & Related papers (2023-04-12T18:43:39Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Exactly Solvable Schr\"odinger equations with Singularities: A
Systematic Approach to Solving Complexified Potentials (part1) [0.0]
Extending the argument of the potential to a complex number leads to solving exactly the Schr"odinger equation.
This paper gives a new perspective on how to solve the second-order linear differential equation written in normal form.
arXiv Detail & Related papers (2023-01-10T05:39:43Z) - The Dynamics of the Hubbard Model through Stochastic Calculus and
Girsanov Transformation [0.0]
We consider the time evolution of density elements in the Bose-Hubbard model.
The exact quantum dynamics is given by an ODE system which turns out to be the time dependent discrete Gross Pitaevskii equation.
The paper has been written with the goal to come up with an efficient calculation scheme for quantum many body systems.
arXiv Detail & Related papers (2022-05-04T11:43:43Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Deformed Explicitly Correlated Gaussians [58.720142291102135]
Deformed correlated Gaussian basis functions are introduced and their matrix elements are calculated.
These basis functions can be used to solve problems with nonspherical potentials.
arXiv Detail & Related papers (2021-08-10T18:23:06Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.