Integrating Sequence and Image Modeling in Irregular Medical Time Series Through Self-Supervised Learning
- URL: http://arxiv.org/abs/2502.06134v1
- Date: Mon, 10 Feb 2025 03:49:41 GMT
- Title: Integrating Sequence and Image Modeling in Irregular Medical Time Series Through Self-Supervised Learning
- Authors: Liuqing Chen, Shuhong Xiao, Shixian Ding, Shanhai Hu, Lingyun Sun,
- Abstract summary: We propose a joint learning framework that incorporates both sequence and image representations.
Our approach outperforms seven other state-of-the-art models in three representative real-world clinical datasets.
- Score: 10.94618770233344
- License:
- Abstract: Medical time series are often irregular and face significant missingness, posing challenges for data analysis and clinical decision-making. Existing methods typically adopt a single modeling perspective, either treating series data as sequences or transforming them into image representations for further classification. In this paper, we propose a joint learning framework that incorporates both sequence and image representations. We also design three self-supervised learning strategies to facilitate the fusion of sequence and image representations, capturing a more generalizable joint representation. The results indicate that our approach outperforms seven other state-of-the-art models in three representative real-world clinical datasets. We further validate our approach by simulating two major types of real-world missingness through leave-sensors-out and leave-samples-out techniques. The results demonstrate that our approach is more robust and significantly surpasses other baselines in terms of classification performance.
Related papers
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
We introduce lesion-enhanced contrastive learning (LeCL), a novel approach to obtain visual representations driven by abnormalities in 2D axial slices across different locations of the CT scans.
We evaluate our approach across three clinical tasks: tumor lesion location, lung disease detection, and patient staging, benchmarking against four state-of-the-art foundation models.
arXiv Detail & Related papers (2024-11-25T13:53:26Z) - Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
We introduce a pioneering method for learning 3D medical image representations through an autoregressive sequence pre-training framework.
Our approach various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence.
arXiv Detail & Related papers (2024-09-13T10:19:10Z) - Diagonal Hierarchical Consistency Learning for Semi-supervised Medical Image Segmentation [0.0]
We propose a novel framework for robust semi-supervised medical image segmentation using diagonal hierarchical consistency learning (DiHC-Net)
It is composed of multiple sub-models with identical multi-scale architecture but with distinct sub-layers, such as up-sampling and normalisation layers.
A series of experiments verifies the efficacy of our simple framework, outperforming all previous approaches on public benchmark dataset covering organ and tumour.
arXiv Detail & Related papers (2023-11-10T12:38:16Z) - Zero-Shot Image Harmonization with Generative Model Prior [22.984119094424056]
We propose a zero-shot approach to image harmonization, aiming to overcome the reliance on large amounts of synthetic composite images.
We introduce a fully modularized framework inspired by human behavior.
We present compelling visual results across diverse scenes and objects, along with a user study validating our approach.
arXiv Detail & Related papers (2023-07-17T00:56:21Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling.
We develop our model, dubbed IRGen, to address the technical challenge of converting an image into a concise sequence of semantic units.
Our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks and two million-scale datasets.
arXiv Detail & Related papers (2023-03-17T17:07:36Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
We propose GraVIS, which is specifically optimized for learning self-supervised features from dermatology images.
GraVIS significantly outperforms its transfer learning and self-supervised learning counterparts in both lesion segmentation and disease classification tasks.
arXiv Detail & Related papers (2023-01-11T11:38:37Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Lesion-Aware Contrastive Representation Learning for Histopathology
Whole Slide Images Analysis [16.264758789726223]
We propose a novel contrastive representation learning framework named Lesion-Aware Contrastive Learning (LACL) for histopathology whole slide image analysis.
The experimental results demonstrate that LACL achieves the best performance in histopathology image representation learning on different datasets.
arXiv Detail & Related papers (2022-06-27T08:39:51Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Unsupervised Landmark Learning from Unpaired Data [117.81440795184587]
Recent attempts for unsupervised landmark learning leverage synthesized image pairs that are similar in appearance but different in poses.
We propose a cross-image cycle consistency framework which applies the swapping-reconstruction strategy twice to obtain the final supervision.
Our proposed framework is shown to outperform strong baselines by a large margin.
arXiv Detail & Related papers (2020-06-29T13:57:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.