Leveraging Diffusion Model and Image Foundation Model for Improved Correspondence Matching in Coronary Angiography
- URL: http://arxiv.org/abs/2504.00191v1
- Date: Mon, 31 Mar 2025 19:58:06 GMT
- Title: Leveraging Diffusion Model and Image Foundation Model for Improved Correspondence Matching in Coronary Angiography
- Authors: Lin Zhao, Xin Yu, Yikang Liu, Xiao Chen, Eric Z. Chen, Terrence Chen, Shanhui Sun,
- Abstract summary: Accurate correspondence matching in coronary angiography images is crucial for reconstructing 3D coronary artery structures.<n>Traditional matching methods for natural images often fail to generalize to X-ray images due to inherent differences such as lack of texture, lower contrast, and overlapping structures.<n>We propose a novel pipeline that generates realistic paired coronary angiography images using a diffusion model conditioned on 2D projections of 3D reconstructed meshes.
- Score: 27.355294460128945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate correspondence matching in coronary angiography images is crucial for reconstructing 3D coronary artery structures, which is essential for precise diagnosis and treatment planning of coronary artery disease (CAD). Traditional matching methods for natural images often fail to generalize to X-ray images due to inherent differences such as lack of texture, lower contrast, and overlapping structures, compounded by insufficient training data. To address these challenges, we propose a novel pipeline that generates realistic paired coronary angiography images using a diffusion model conditioned on 2D projections of 3D reconstructed meshes from Coronary Computed Tomography Angiography (CCTA), providing high-quality synthetic data for training. Additionally, we employ large-scale image foundation models to guide feature aggregation, enhancing correspondence matching accuracy by focusing on semantically relevant regions and keypoints. Our approach demonstrates superior matching performance on synthetic datasets and effectively generalizes to real-world datasets, offering a practical solution for this task. Furthermore, our work investigates the efficacy of different foundation models in correspondence matching, providing novel insights into leveraging advanced image foundation models for medical imaging applications.
Related papers
- Denoising, segmentation and volumetric rendering of optical coherence tomography angiography (OCTA) image using deep learning techniques: a review [7.400678320393914]
OCTA is a non-invasive imaging technique widely used to study vascular structures and micro-circulation dynamics in the retina and choroid.
Deep learning (DL) based imaging analysis models are able to automatically detect and remove artifacts and noises.
arXiv Detail & Related papers (2025-02-20T08:34:05Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.<n>Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.<n>Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
We introduce lesion-enhanced contrastive learning (LeCL), a novel approach to obtain visual representations driven by abnormalities in 2D axial slices across different locations of the CT scans.
We evaluate our approach across three clinical tasks: tumor lesion location, lung disease detection, and patient staging, benchmarking against four state-of-the-art foundation models.
arXiv Detail & Related papers (2024-11-25T13:53:26Z) - Towards Establishing Dense Correspondence on Multiview Coronary
Angiography: From Point-to-Point to Curve-to-Curve Query Matching [12.667439312616786]
We aim to establish dense correspondence in multi-view angiography, serving as a fundamental basis for various clinical applications.
We formulated the problem of dense correspondence estimation as a query matching task over all points of interest in the given views.
The method was evaluated on a set of 1260 image pairs from different views across 8 clinically relevant angulation groups.
arXiv Detail & Related papers (2023-12-18T16:47:43Z) - Unsupervised correspondence with combined geometric learning and imaging
for radiotherapy applications [0.0]
The aim of this study was to develop a model to accurately identify corresponding points between organ segmentations of different patients for radiotherapy applications.
A model for simultaneous correspondence and estimation in 3D shapes was trained with head and neck organ segmentations from planning CT scans.
We then extended the original model to incorporate imaging information using two approaches.
arXiv Detail & Related papers (2023-09-25T16:29:18Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Morphology-based non-rigid registration of coronary computed tomography and intravascular images through virtual catheter path optimization [0.2631367460046713]
We present a morphology-based framework for the rigid and non-rigid matching of intravascular images to CCTA images.
Our framework reduces the manual effort required to conduct large-scale multi-modal clinical studies.
arXiv Detail & Related papers (2022-12-30T21:48:32Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - LEARN++: Recurrent Dual-Domain Reconstruction Network for Compressed
Sensing CT [17.168584459606272]
The LEARN++ model integrates two parallel and interactiveworks to perform image restoration and sinogram inpainting operations on both the image and projection domains simultaneously.
Results show that the proposed LEARN++ model achieves competitive qualitative and quantitative results compared to several state-of-the-art methods in terms of both artifact reduction and detail preservation.
arXiv Detail & Related papers (2020-12-13T07:00:50Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.