論文の概要: Optimizing Knowledge Integration in Retrieval-Augmented Generation with Self-Selection
- arxiv url: http://arxiv.org/abs/2502.06148v1
- Date: Mon, 10 Feb 2025 04:29:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:33:42.478570
- Title: Optimizing Knowledge Integration in Retrieval-Augmented Generation with Self-Selection
- Title(参考訳): 自己選択型検索拡張生成における知識統合の最適化
- Authors: Yan Weng, Fengbin Zhu, Tong Ye, Haoyan Liu, Fuli Feng, Tat-Seng Chua,
- Abstract要約: Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) がより正確で信頼性の高い応答を生成するのに有効であることが証明されている。
本稿では,自己選択型RAGフレームワークを提案する。このフレームワークでは,内部パラメトリック知識のみで生成されたペアの応答からLLMを選択できる。
- 参考スコア(独自算出の注目度): 72.92366526004464
- License:
- Abstract: Retrieval-Augmented Generation (RAG), which integrates external knowledge into Large Language Models (LLMs), has proven effective in enabling LLMs to produce more accurate and reliable responses. However, it remains a significant challenge how to effectively integrate external retrieved knowledge with internal parametric knowledge in LLMs. In this work, we propose a novel Self-Selection RAG framework, where the LLM is made to select from pairwise responses generated with internal parametric knowledge solely and with external retrieved knowledge together to achieve enhanced accuracy. To this end, we devise a Self-Selection-RGP method to enhance the capabilities of the LLM in both generating and selecting the correct answer, by training the LLM with Direct Preference Optimization (DPO) over a curated Retrieval Generation Preference (RGP) dataset. Experimental results with two open-source LLMs (i.e., Llama2-13B-Chat and Mistral-7B) well demonstrate the superiority of our approach over other baseline methods on Natural Questions (NQ) and TrivialQA datasets.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG)は、外部知識をLLM(Large Language Models)に統合し、LLMがより正確で信頼性の高い応答を生成するのに有効であることが証明されている。
しかし、LLMの内部パラメトリック知識と外部から取得した知識を効果的に統合する方法は依然として大きな課題である。
本研究では,自己選択型RAGフレームワークを提案する。このフレームワークでは,内部パラメトリック知識のみと外部抽出知識を併用したペアワイズ応答からLLMを選択し,精度の向上を実現する。
そこで本稿では,自己選択-RGP法を考案し,RGP(Retrieval Generation Preference)データセット上で直接参照最適化(Direct Preference Optimization, DPO)を用いてLLMを訓練することにより,LLMの正解の生成と選択の能力を向上させる。
Llama2-13B-Chat と Mistral-7B の2つのオープンソース LLM による実験結果は,NQ および TrivialQA データセットに対する我々のアプローチの優位性をよく示している。
関連論文リスト
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - Aligning Large Language Models to Follow Instructions and Hallucinate Less via Effective Data Filtering [66.5524727179286]
NOVAは、幻覚を減らすための学習知識とよく一致した高品質なデータを特定するために設計されたフレームワークである。
内部整合性探索(ICP)とセマンティック等価同定(SEI)が含まれており、LLMが命令データとどれだけ親しみやすいかを測定する。
選択したサンプルの品質を確保するため,親しみ以上の特性を考慮した専門家による報酬モデルを導入する。
論文 参考訳(メタデータ) (2025-02-11T08:05:56Z) - LLM Alignment as Retriever Optimization: An Information Retrieval Perspective [44.26715637344781]
大規模言語モデル(LLM)は、推論、コーディング、コミュニケーションの能力を備えた人工知能に革命をもたらした。
我々の研究は、確立された情報検索(IR)の原則に基づいて、LCMアライメントのための新しい直接最適化手法を導入する。
本稿では,LLMアライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント・アライメント(LarPO)を提案する。
論文 参考訳(メタデータ) (2025-02-06T01:22:06Z) - Parametric Retrieval Augmented Generation [32.29608109539912]
Parametric RAGは、外部知識を直接フィードフォワードネットワークのパラメータに統合する新しいRAGパラダイムである。
これは、大きな言語モデルにおける知識増強の有効性と効率を大幅に向上させる。
論文 参考訳(メタデータ) (2025-01-27T10:04:49Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
検索強化生成(RAG)から非実効出力を検出する軽量な手法を提案する。
私たちは、二項決定を下すためにしきい値にできる事実性スコアを計算します。
実験の結果, ROC曲線 (AUC) の下では, 関連するオープンソースデータセットの広範囲にわたって高い面積を示すことができた。
論文 参考訳(メタデータ) (2024-11-01T20:44:59Z) - A + B: A General Generator-Reader Framework for Optimizing LLMs to Unleash Synergy Potential [20.1396255995056]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)に必要な知識を補う効果的なソリューションである。
LLM自体から生成する検索段階を置き換えるために、"generate-then-read"パイプラインが提案されている。
本稿では,基礎モデルと型の組み合わせの異なる一般的な「A + B」フレームワークを体系的な調査のために形式化する。
論文 参考訳(メタデータ) (2024-06-06T11:14:27Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - CtrlA: Adaptive Retrieval-Augmented Generation via Inherent Control [26.21425058462886]
大規模言語モデル(LLM)の幻覚を、検索された外部知識で緩和するための有望な解決策として、検索拡張世代(RAG)が出現している。
本稿では,適応的なRAGを表現的視点から解決し,固有な制御ベースフレームワークであるnameを開発するための最初の試みについて述べる。
実験により、名前は様々なタスクにおいて既存の適応RAG法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-05-29T03:17:16Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)が外部知識を活用することを可能にする。
既存のRAGモデルは、LLMを受動的情報受信者として扱うことが多い。
人間の学習行動を模倣するマルチエージェントフレームワークであるActiveRAGを紹介する。
論文 参考訳(メタデータ) (2024-02-21T06:04:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。