論文の概要: Unveiling the Capabilities of Large Language Models in Detecting Offensive Language with Annotation Disagreement
- arxiv url: http://arxiv.org/abs/2502.06207v2
- Date: Sun, 16 Feb 2025 10:03:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:02:27.954071
- Title: Unveiling the Capabilities of Large Language Models in Detecting Offensive Language with Annotation Disagreement
- Title(参考訳): アノテーションによる攻撃的言語検出における大規模言語モデルの能力の解明
- Authors: Junyu Lu, Kai Ma, Kaichun Wang, Kelaiti Xiao, Roy Ka-Wei Lee, Bo Xu, Liang Yang, Hongfei Lin,
- Abstract要約: 本研究では,攻撃言語検出における多言語モデル(LLM)の性能を系統的に評価する。
本研究では,二項分類の精度を分析し,モデル信頼度と人的不一致度の関係を検証し,不一致サンプルがモデル決定にどう影響するかを考察する。
- 参考スコア(独自算出の注目度): 22.992484902761994
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have become essential for offensive language detection, yet their ability to handle annotation disagreement remains underexplored. Disagreement samples, which arise from subjective interpretations, pose a unique challenge due to their ambiguous nature. Understanding how LLMs process these cases, particularly their confidence levels, can offer insight into their alignment with human annotators. This study systematically evaluates the performance of multiple LLMs in detecting offensive language at varying levels of annotation agreement. We analyze binary classification accuracy, examine the relationship between model confidence and human disagreement, and explore how disagreement samples influence model decision-making during few-shot learning and instruction fine-tuning. Our findings reveal that LLMs struggle with low-agreement samples, often exhibiting overconfidence in these ambiguous cases. However, utilizing disagreement samples in training improves both detection accuracy and model alignment with human judgment. These insights provide a foundation for enhancing LLM-based offensive language detection in real-world moderation tasks.
- Abstract(参考訳): 大規模な言語モデル (LLM) は攻撃的な言語検出に欠かせないものとなっているが、アノテーションの不一致に対処する能力は未解明のままである。
主観的解釈から生じる相違サンプルは、その曖昧な性質のために独特な挑戦を生んでいる。
LLMがこれらのケース、特にその信頼性レベルをどのように処理するかを理解することは、人間のアノテータとの整合性についての洞察を与えることができる。
本研究は, 各種アノテーション合意における攻撃言語検出における複数のLDMの性能を系統的に評価する。
本研究では,二分分類の精度を分析し,モデル信頼度と人的不一致度の関係を調べた。
以上の結果から,LSMは低濃度試料に苦慮し,不明瞭な症例では過度に自信を示さないことが判明した。
しかし、トレーニングにおける不一致サンプルの利用により、検出精度と人的判断とのモデルアライメントが向上する。
これらの知見は、実世界のモデレーションタスクにおけるLLMに基づく攻撃言語検出の強化の基礎となる。
関連論文リスト
- LINGOLY-TOO: Disentangling Memorisation from Reasoning with Linguistic Templatisation and Orthographic Obfuscation [1.2576388595811496]
本稿では,モデル性能推定における暗記の影響を低減する言語推論問題を生成するための枠組みを提案する。
このフレームワークを言語推論のための挑戦的なベンチマークであるlingOLY-TOOの開発に適用する。
論文 参考訳(メタデータ) (2025-03-04T19:57:47Z) - Exploring Robustness of LLMs to Sociodemographically-Conditioned Paraphrasing [7.312170216336085]
我々は、社会デミノグラフィーの次元にまたがる幅広いバリエーションを探求するために、より広いアプローチを取る。
我々はSocialIQAデータセットを拡張し、ソシオデミノグラフィースタイルを条件とした多様なパラフレーズセットを作成する。
人口統計学的パラフレーズが言語モデルの性能に大きく影響していることが判明した。
論文 参考訳(メタデータ) (2025-01-14T17:50:06Z) - Counterfactual Samples Constructing and Training for Commonsense Statements Estimation [17.970740197590693]
可塑性推定は、言語モデルが現実世界を客観的に理解できるようにする上で重要な役割を果たす。
理想的なPEモデルの2つの重要な特徴を欠いている。
本稿では,Commonsense Counterfactual Samples Generatingと呼ばれる新しいモデル非依存手法を提案する。
論文 参考訳(メタデータ) (2024-12-29T20:18:52Z) - Do LLMs Understand Ambiguity in Text? A Case Study in Open-world Question Answering [15.342415325821063]
自然言語の曖昧さは、オープンドメインの質問応答に使用される大規模言語モデル(LLM)に重大な課題をもたらす。
我々は,明示的曖昧化戦略の効果を計測することに集中して,市販のLLM性能と数発のLLM性能を比較した。
本研究では, 難解な問合せタスクにおいて, LLM性能を向上させるために, 簡単な, トレーニング不要, トークンレベルの曖昧さを効果的に活用できることを実証する。
論文 参考訳(メタデータ) (2024-11-19T10:27:26Z) - Hate Personified: Investigating the role of LLMs in content moderation [64.26243779985393]
ヘイト検出などの主観的タスクでは,人々が嫌悪感を知覚する場合には,多様なグループを表現できるLarge Language Model(LLM)の能力は不明確である。
追加の文脈をプロンプトに含めることで、LLMの地理的プライミングに対する感受性、ペルソナ属性、数値情報を分析し、様々なグループのニーズがどの程度反映されているかを評価する。
論文 参考訳(メタデータ) (2024-10-03T16:43:17Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Analyzing LLM Behavior in Dialogue Summarization: Unveiling Circumstantial Hallucination Trends [38.86240794422485]
対話要約のための大規模言語モデルの忠実度を評価する。
私たちの評価は幻覚を構成するものに関して微妙な点を呈する。
既存の指標より優れた微細な誤差検出のための2つのプロンプトベースのアプローチを導入する。
論文 参考訳(メタデータ) (2024-06-05T17:49:47Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
本稿では,LLMベースのフレームワークであるReEvalについて述べる。
本稿では、ChatGPTを用いてReEvalを実装し、2つの人気のあるオープンドメインQAデータセットのバリエーションを評価する。
我々の生成したデータは人間可読であり、大きな言語モデルで幻覚を引き起こすのに役立ちます。
論文 参考訳(メタデータ) (2023-10-19T06:37:32Z) - Language models are not naysayers: An analysis of language models on
negation benchmarks [58.32362243122714]
我々は,次世代自動回帰言語モデルによる否定処理能力の評価を行った。
LLMには,否定の存在に対する感受性,否定の語彙的意味を捉える能力の欠如,否定下での推論の失敗など,いくつかの制限があることが示されている。
論文 参考訳(メタデータ) (2023-06-14T01:16:37Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
我々は,ほとんどの人間が自明に感じる単純な推論タスクにおいて,言語理解能力を評価する。
我々は, (i) 文法的に特定された含意, (ii) 不確実性のある明らかな副詞を持つ前提, (iii) 単調性含意を目標とする。
モデルはこれらの評価セットに対して中程度から低い性能を示す。
論文 参考訳(メタデータ) (2023-05-24T06:41:09Z) - We're Afraid Language Models Aren't Modeling Ambiguity [136.8068419824318]
あいまいさの管理は人間の言語理解の重要な部分です。
文中のあいまいさは,他の文との係り受け関係に与える影響によって特徴付けられる。
我々は,多ラベルNLIモデルが曖昧さによって誤解を招く野生の政治的主張にフラグを付けることができることを示す。
論文 参考訳(メタデータ) (2023-04-27T17:57:58Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding [119.45683008451698]
大規模言語モデル(LLM)は、一連の自然言語理解タスクにおいて最先端のパフォーマンスを達成した。
予測のショートカットとしてデータセットのバイアスやアーティファクトに依存するかも知れません。
これは、その一般化性と敵対的堅牢性に大きな影響を与えている。
論文 参考訳(メタデータ) (2022-08-25T03:51:39Z) - Empowering Language Understanding with Counterfactual Reasoning [141.48592718583245]
本稿では,反現実的思考を模倣した反現実的推論モデルを提案する。
特に,各実例に対して代表的対実サンプルを生成する生成モジュールを考案し,その対実サンプルと実例サンプルを比較してモデル予測を振り返るレトロスペクティブモジュールを考案した。
論文 参考訳(メタデータ) (2021-06-06T06:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。