Position: Continual Learning Benefits from An Evolving Population over An Unified Model
- URL: http://arxiv.org/abs/2502.06210v1
- Date: Mon, 10 Feb 2025 07:21:44 GMT
- Title: Position: Continual Learning Benefits from An Evolving Population over An Unified Model
- Authors: Aojun Lu, Junchao Ke, Chunhui Ding, Jiahao Fan, Yanan Sun,
- Abstract summary: This study introduces a novel Population-based Continual Learning (PCL) framework.
PCL extends Continual Learning to the architectural level by maintaining and evolving a population of neural network architectures.
PCL outperforms state-of-the-art rehearsal-free CL methods that employs a unified model.
- Score: 4.348086726793516
- License:
- Abstract: Deep neural networks have demonstrated remarkable success in machine learning; however, they remain fundamentally ill-suited for Continual Learning (CL). Recent research has increasingly focused on achieving CL without the need for rehearsal. Among these, parameter isolation-based methods have proven particularly effective in enhancing CL by optimizing model weights for each incremental task. Despite their success, they fall short in optimizing architectures tailored to distinct incremental tasks. To address this limitation, updating a group of models with different architectures offers a promising alternative to the traditional CL paradigm that relies on a single unified model. Building on this insight, this study introduces a novel Population-based Continual Learning (PCL) framework. PCL extends CL to the architectural level by maintaining and evolving a population of neural network architectures, which are continually refined for the current task through NAS. Importantly, the well-evolved population for the current incremental task is naturally inherited by the subsequent one, thereby facilitating forward transfer, a crucial objective in CL. Throughout the CL process, the population evolves, yielding task-specific architectures that collectively form a robust CL system. Experimental results demonstrate that PCL outperforms state-of-the-art rehearsal-free CL methods that employs a unified model, highlighting its potential as a new paradigm for CL.
Related papers
- S-LoRA: Scalable Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
Continual Learning with foundation models has emerged as a promising approach to harnessing the power of pre-trained models for sequential tasks.
We propose a Scalable Low-Rank Adaptation (S-LoRA) method for CL (in particular class incremental learning), which incrementally decouples the learning of the direction and magnitude of LoRA parameters.
Our theoretical and empirical analysis demonstrates that S-LoRA tends to follow a low-loss trajectory that converges to an overlapped low-loss region, resulting in an excellent stability-plasticity trade-off in CL.
arXiv Detail & Related papers (2025-01-22T20:00:41Z) - Continual Task Learning through Adaptive Policy Self-Composition [54.95680427960524]
CompoFormer is a structure-based continual transformer model that adaptively composes previous policies via a meta-policy network.
Our experiments reveal that CompoFormer outperforms conventional continual learning (CL) methods, particularly in longer task sequences.
arXiv Detail & Related papers (2024-11-18T08:20:21Z) - ICL-TSVD: Bridging Theory and Practice in Continual Learning with Pre-trained Models [103.45785408116146]
Continual learning (CL) aims to train a model that can solve multiple tasks presented sequentially.
Recent CL approaches have achieved strong performance by leveraging large pre-trained models that generalize well to downstream tasks.
However, such methods lack theoretical guarantees, making them prone to unexpected failures.
We bridge this gap by integrating an empirically strong approach into a principled framework, designed to prevent forgetting.
arXiv Detail & Related papers (2024-10-01T12:58:37Z) - Theory on Mixture-of-Experts in Continual Learning [72.42497633220547]
Continual learning (CL) has garnered significant attention because of its ability to adapt to new tasks that arrive over time.
Catastrophic forgetting (of old tasks) has been identified as a major issue in CL, as the model adapts to new tasks.
MoE model has recently been shown to effectively mitigate catastrophic forgetting in CL, by employing a gating network.
arXiv Detail & Related papers (2024-06-24T08:29:58Z) - Recent Advances of Foundation Language Models-based Continual Learning: A Survey [31.171203978742447]
Foundation language models (LMs) have marked significant achievements in the domains of natural language processing (NLP) and computer vision (CV)
However, they can not emulate human-like continuous learning due to catastrophic forgetting.
Various continual learning (CL)-based methodologies have been developed to refine LMs, enabling them to adapt to new tasks without forgetting previous knowledge.
arXiv Detail & Related papers (2024-05-28T23:32:46Z) - Realistic Continual Learning Approach using Pre-trained Models [1.2582887633807602]
We introduce Realistic Continual Learning (RealCL), a novel CL paradigm where class distributions across tasks are random.
We also present CLARE (Continual Learning Approach with pRE-trained models for RealCL scenarios), a pre-trained model-based solution designed to integrate new knowledge while preserving past learning.
arXiv Detail & Related papers (2024-04-11T13:19:46Z) - A Unified and General Framework for Continual Learning [58.72671755989431]
Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge.
Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques.
This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies.
arXiv Detail & Related papers (2024-03-20T02:21:44Z) - Read Between the Layers: Leveraging Multi-Layer Representations for Rehearsal-Free Continual Learning with Pre-Trained Models [15.847302755988506]
We address the Continual Learning problem, wherein a model must learn a sequence of tasks from non-stationary distributions.
We propose LayUP, a new prototype-based approach to CL that leverages second-order feature statistics from multiple intermediate layers of a pre-trained network.
Our results demonstrate that fully exhausting the representational capacities of pre-trained models in CL goes well beyond their final embeddings.
arXiv Detail & Related papers (2023-12-13T13:11:44Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
This paper extensively studies the impact of Continual Learning (CL) models as pre-trainers.
We find that the transfer quality of the representation often increases gradually without noticeable degradation in fine-tuning performance.
We propose a new fine-tuning scheme, GLobal Attention Discretization (GLAD), that preserves rich task-generic representation during solving downstream tasks.
arXiv Detail & Related papers (2023-06-21T05:26:28Z) - Do Pre-trained Models Benefit Equally in Continual Learning? [25.959813589169176]
Existing work on continual learning (CL) is primarily devoted to developing algorithms for models trained from scratch.
Despite their encouraging performance on contrived benchmarks, these algorithms show dramatic performance drops in real-world scenarios.
This paper advocates the systematic introduction of pre-training to CL.
arXiv Detail & Related papers (2022-10-27T18:03:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.