CLAP4CLIP: Continual Learning with Probabilistic Finetuning for Vision-Language Models
- URL: http://arxiv.org/abs/2403.19137v3
- Date: Thu, 31 Oct 2024 05:22:26 GMT
- Title: CLAP4CLIP: Continual Learning with Probabilistic Finetuning for Vision-Language Models
- Authors: Saurav Jha, Dong Gong, Lina Yao,
- Abstract summary: Continual learning (CL) aims to help deep neural networks learn new knowledge while retaining what has been learned.
Our work proposes Continual LeArning with Probabilistic finetuning (CLAP) - a probabilistic modeling framework over visual-guided text features per task.
- Score: 23.398619576886375
- License:
- Abstract: Continual learning (CL) aims to help deep neural networks learn new knowledge while retaining what has been learned. Owing to their powerful generalizability, pre-trained vision-language models such as Contrastive Language-Image Pre-training (CLIP) have lately gained traction as practical CL candidates. However, the domain mismatch between the pre-training and the downstream CL tasks often calls for finetuning of the CLIP on the latter. Most existing finetuning methods exhibit deterministic nature. This makes them overlook the many possible interactions across the input modalities and deems them unsafe for high-risk tasks requiring reliable uncertainty estimation. To address these, our work proposes Continual LeArning with Probabilistic finetuning (CLAP) - a probabilistic modeling framework over visual-guided text features per task, thus providing more calibrated CL finetuning. Unlike recent data-hungry anti-forgetting CL techniques, CLAP alleviates forgetting by exploiting the rich pre-trained knowledge of CLIP for weight initialization and distribution regularization of task-specific parameters. Cooperating with the diverse range of existing prompting methods, CLAP can surpass the predominant deterministic finetuning approaches for CL with CLIP. We conclude with out-of-the-box applications of superior uncertainty estimation abilities of CLAP including novel data detection and exemplar selection within the existing CL setups. Our code is available at \url{https://github.com/srvCodes/clap4clip}.
Related papers
- Self-Calibrated CLIP for Training-Free Open-Vocabulary Segmentation [19.749490092520006]
Self-Calibrated CLIP (SC-CLIP) is a training-free method that calibrates CLIP to produce finer-language representations.
SC-CLIP boosts the performance of vanilla CLIP ViT-L/14 by 6.8 times.
arXiv Detail & Related papers (2024-11-24T15:14:05Z) - ICL-TSVD: Bridging Theory and Practice in Continual Learning with Pre-trained Models [103.45785408116146]
Continual learning (CL) aims to train a model that can solve multiple tasks presented sequentially.
Recent CL approaches have achieved strong performance by leveraging large pre-trained models that generalize well to downstream tasks.
However, such methods lack theoretical guarantees, making them prone to unexpected failures.
We bridge this gap by integrating an empirically strong approach into a principled framework, designed to prevent forgetting.
arXiv Detail & Related papers (2024-10-01T12:58:37Z) - Calibrating Multi-modal Representations: A Pursuit of Group Robustness without Annotations [19.800907485589402]
Fine-tuning pre-trained vision-language models, like CLIP, has yielded success on diverse downstream tasks.
These tuned models tend to become highly specialized, limiting their practicality for real-world deployment.
We propose a lightweight representation calibration method for fine-tuning CLIP.
arXiv Detail & Related papers (2024-03-12T01:47:17Z) - Enhancing Few-shot CLIP with Semantic-Aware Fine-Tuning [61.902254546858465]
Methods based on Contrastive Language-Image Pre-training have exhibited promising performance in few-shot adaptation tasks.
We propose fine-tuning the parameters of the attention pooling layer during the training process to encourage the model to focus on task-specific semantics.
arXiv Detail & Related papers (2023-11-08T05:18:57Z) - NPCL: Neural Processes for Uncertainty-Aware Continual Learning [26.642662729915234]
Continual learning (CL) aims to train deep neural networks efficiently on streaming data while limiting the forgetting caused by new tasks.
We propose handling CL tasks with neural processes (NPs), a class of meta-learners that encode different tasks into probabilistic distributions over functions.
arXiv Detail & Related papers (2023-10-30T05:10:00Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - POP: Prompt Of Prompts for Continual Learning [59.15888651733645]
Continual learning (CL) aims to mimic the human ability to learn new concepts without catastrophic forgetting.
We show that a foundation model equipped with POP learning is able to outperform classic CL methods by a significant margin.
arXiv Detail & Related papers (2023-06-14T02:09:26Z) - A Neural Span-Based Continual Named Entity Recognition Model [13.982996312057207]
We propose SpanKL, a Span-based model with Knowledge distillation (KD) to preserve memories and multi-Label prediction to prevent conflicts in CL-NER.
Experiments on synthetic CL datasets derived from OntoNotes and Few-NERD show that SpanKL significantly outperforms previous SoTA in many aspects.
arXiv Detail & Related papers (2023-02-23T17:51:29Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - Do Pre-trained Models Benefit Equally in Continual Learning? [25.959813589169176]
Existing work on continual learning (CL) is primarily devoted to developing algorithms for models trained from scratch.
Despite their encouraging performance on contrived benchmarks, these algorithms show dramatic performance drops in real-world scenarios.
This paper advocates the systematic introduction of pre-training to CL.
arXiv Detail & Related papers (2022-10-27T18:03:37Z) - Beyond Supervised Continual Learning: a Review [69.9674326582747]
Continual Learning (CL) is a flavor of machine learning where the usual assumption of stationary data distribution is relaxed or omitted.
Changes in the data distribution can cause the so-called catastrophic forgetting (CF) effect: an abrupt loss of previous knowledge.
This article reviews literature that study CL in other settings, such as learning with reduced supervision, fully unsupervised learning, and reinforcement learning.
arXiv Detail & Related papers (2022-08-30T14:44:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.