論文の概要: Enhancing Ground-to-Aerial Image Matching for Visual Misinformation Detection Using Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2502.06288v1
- Date: Mon, 10 Feb 2025 09:31:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:31:44.844472
- Title: Enhancing Ground-to-Aerial Image Matching for Visual Misinformation Detection Using Semantic Segmentation
- Title(参考訳): セマンティックセグメンテーションを用いた画像誤情報検出のための地上対空中画像マッチングの強化
- Authors: Matteo Mule, Matteo Pannacci, Ali Ghasemi Goudarzi, Francesco Pro, Lorenzo Papa, Luca Maiano, Irene Amerini,
- Abstract要約: 近年のジェネレーティブAI技術の進歩は、インターネット上で利用可能なデジタルメディアの信頼性に関する深刻な懸念を引き起こしている。
これらの懸念に対処するため、GPS座標などの外部情報のない非ジオタグ付き地上画像の位置情報化がますます重要になっている。
本研究は、GPSデータを使わずに、さまざまな視野(FoV)と対応する衛星画像とを関連付けるという課題に取り組む。
- 参考スコア(独自算出の注目度): 1.9055921262476347
- License:
- Abstract: The recent advancements in generative AI techniques, which have significantly increased the online dissemination of altered images and videos, have raised serious concerns about the credibility of digital media available on the Internet and distributed through information channels and social networks. This issue particularly affects domains that rely heavily on trustworthy data, such as journalism, forensic analysis, and Earth observation. To address these concerns, the ability to geolocate a non-geo-tagged ground-view image without external information, such as GPS coordinates, has become increasingly critical. This study tackles the challenge of linking a ground-view image, potentially exhibiting varying fields of view (FoV), to its corresponding satellite image without the aid of GPS data. To achieve this, we propose a novel four-stream Siamese-like architecture, the Quadruple Semantic Align Net (SAN-QUAD), which extends previous state-of-the-art (SOTA) approaches by leveraging semantic segmentation applied to both ground and satellite imagery. Experimental results on a subset of the CVUSA dataset demonstrate significant improvements of up to 9.8\% over prior methods across various FoV settings.
- Abstract(参考訳): 近年のジェネレーティブAI技術の進歩は、変化した画像やビデオのオンライン普及を大幅に加速させ、インターネット上で利用可能なデジタルメディアの信頼性と、情報チャネルやソーシャルネットワークを通じて配布されることへの深刻な懸念を引き起こしている。
この問題は特にジャーナリズム、法科学分析、地球観測などの信頼できるデータに大きく依存する領域に影響を及ぼす。
これらの懸念に対処するため、GPS座標などの外部情報のない非ジオタグ付き地上画像の位置情報化がますます重要になっている。
本研究は、GPSデータを使わずに、様々な視野(FoV)と対応する衛星画像とを関連付けるという課題に取り組む。
そこで本稿では, 地上および衛星画像に適用したセマンティックセマンティックセマンティックセマンティックセマンティックセマンティックネット(SAN-QUAD)を提案する。
CVUSAデータセットのサブセットの実験結果は、様々なFoV設定で以前のメソッドよりも最大9.8\%の大幅な改善を示している。
関連論文リスト
- Game4Loc: A UAV Geo-Localization Benchmark from Game Data [0.0]
クロスビューペアデータの部分的マッチングを含む,より実用的なUAV測位タスクを提案する。
実験により,UAV測地のためのデータとトレーニング手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-25T13:33:28Z) - Weakly-supervised Camera Localization by Ground-to-satellite Image Registration [52.54992898069471]
本稿では,地対衛星画像登録のための弱教師付き学習戦略を提案する。
地上画像ごとに正の衛星画像と負の衛星画像を導き出す。
また,クロスビュー画像の相対回転推定のための自己超越戦略を提案する。
論文 参考訳(メタデータ) (2024-09-10T12:57:16Z) - Geospecific View Generation -- Geometry-Context Aware High-resolution Ground View Inference from Satellite Views [5.146618378243241]
多視点衛星画像から弱い幾何学やテクスチャを最大限に尊重するジオ特殊ビューを生成するための新しいパイプラインを提案する。
本手法は,衛星画像からの包括的情報を用いて,位置の地上画像を直接予測する。
我々のパイプラインは、衛星画像のみに基づいて、実物に近い地上ビューを初めて生成したものであることを実証する。
論文 参考訳(メタデータ) (2024-07-10T21:51:50Z) - Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data [66.49494950674402]
航空画像からの損傷評価のタスクのための大規模合成監視を作成する際に,新たなテキスト・画像生成モデルを活用する。
低リソース領域から何千ものポストディスアスター画像を生成するために、効率的でスケーラブルなパイプラインを構築しています。
我々は,xBDおよびSKAI画像のクロスジオグラフィー領域転送設定におけるフレームワークの強度を,単一ソースとマルチソースの両方で検証する。
論文 参考訳(メタデータ) (2024-05-22T16:07:05Z) - A Semantic Segmentation-guided Approach for Ground-to-Aerial Image Matching [30.324252605889356]
本研究は,GPSデータを使わずに,問合せ地上画像と対応する衛星画像とをマッチングする問題に対処する。
これは地上画像と衛星画像の特徴を比較することで行われ、3ストリームのシームズ様のネットワークを通じて、対応する衛星のセグメンテーションマスクを革新的に活用する。
この新しさは、衛星画像とセマンティックセグメンテーションマスクの融合にあり、モデルが有用な特徴を抽出し、画像の重要な部分に集中できるようにすることを目的としている。
論文 参考訳(メタデータ) (2024-04-17T12:13:18Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - Multiview Aerial Visual Recognition (MAVREC): Can Multi-view Improve
Aerial Visual Perception? [57.77643186237265]
我々は、異なる視点から同期シーンを記録するビデオデータセットであるMultiview Aerial Visual RECgnition(MAVREC)を提示する。
MAVRECは約2.5時間、業界標準の2.7K解像度ビデオシーケンス、0.5万フレーム以上のフレーム、11万の注釈付きバウンディングボックスで構成されている。
これにより、MAVRECは地上および空中ビューのデータセットとして最大であり、ドローンベースのデータセットの中では4番目に大きい。
論文 参考訳(メタデータ) (2023-12-07T18:59:14Z) - Orientation-Guided Contrastive Learning for UAV-View Geo-Localisation [0.0]
UAVビューのジオローカライゼーションのための指向性誘導型トレーニングフレームワークを提案する。
我々は、この予測がトレーニングをサポートし、以前のアプローチより優れていることを実験的に実証した。
我々は,University-1652とUniversity-160kの2つのデータセットについて,最先端の結果を得た。
論文 参考訳(メタデータ) (2023-08-02T07:32:32Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - Geo-Localization via Ground-to-Satellite Cross-View Image Retrieval [25.93015219830576]
ランドマークの地平面画像から,衛星視画像の検索により地理空間のクロスビュー化を図っている。
我々は、地上視と衛星視の橋渡しとして、ドローン視情報を利用する。
論文 参考訳(メタデータ) (2022-05-22T17:35:13Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
地上で取得したクエリ画像とジオタグ付き衛星画像の大規模データベースとをマッチングすることにより、地上から衛星画像のジオローカライズの問題に対処する。
我々の新しい手法は、衛星画像のピクセルサイズの精度まで、クエリー画像のきめ細かい位置を達成できる。
論文 参考訳(メタデータ) (2022-03-26T20:10:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。