論文の概要: Orientation-Guided Contrastive Learning for UAV-View Geo-Localisation
- arxiv url: http://arxiv.org/abs/2308.00982v1
- Date: Wed, 2 Aug 2023 07:32:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 13:52:01.960227
- Title: Orientation-Guided Contrastive Learning for UAV-View Geo-Localisation
- Title(参考訳): UAV-Viewジオローカライゼーションのための指向型コントラスト学習
- Authors: Fabian Deuser, Konrad Habel, Martin Werner, Norbert Oswald
- Abstract要約: UAVビューのジオローカライゼーションのための指向性誘導型トレーニングフレームワークを提案する。
我々は、この予測がトレーニングをサポートし、以前のアプローチより優れていることを実験的に実証した。
我々は,University-1652とUniversity-160kの2つのデータセットについて,最先端の結果を得た。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieving relevant multimedia content is one of the main problems in a world
that is increasingly data-driven. With the proliferation of drones, high
quality aerial footage is now available to a wide audience for the first time.
Integrating this footage into applications can enable GPS-less geo-localisation
or location correction.
In this paper, we present an orientation-guided training framework for
UAV-view geo-localisation. Through hierarchical localisation orientations of
the UAV images are estimated in relation to the satellite imagery. We propose a
lightweight prediction module for these pseudo labels which predicts the
orientation between the different views based on the contrastive learned
embeddings. We experimentally demonstrate that this prediction supports the
training and outperforms previous approaches. The extracted pseudo-labels also
enable aligned rotation of the satellite image as augmentation to further
strengthen the generalisation. During inference, we no longer need this
orientation module, which means that no additional computations are required.
We achieve state-of-the-art results on both the University-1652 and
University-160k datasets.
- Abstract(参考訳): 関連するマルチメディアコンテンツを取得することは、ますますデータ駆動の世界で大きな問題の1つだ。
ドローンの普及に伴い、高品質の空中映像が初めて広く視聴できるようになった。
この映像をアプリケーションに組み込むことで、GPSのないジオローカライゼーションや位置補正が可能になる。
本稿では,uav-viewジオローカライズのための方向案内型トレーニングフレームワークを提案する。
衛星画像に関して、UAV画像の階層的位置化方向を推定する。
本稿では,これらの擬似ラベルに対する軽量な予測モジュールを提案する。
我々は、この予測がトレーニングをサポートし、以前のアプローチより優れていることを実験的に実証した。
抽出された擬似ラベルは、衛星画像のアライメント回転を増補として可能とし、一般化をさらに強化する。
推論の間、この向き付けモジュールはもはや不要であり、追加の計算は不要である。
我々は,university-1652とuniversity-160kのデータセットで最新の結果を得る。
関連論文リスト
- Game4Loc: A UAV Geo-Localization Benchmark from Game Data [0.0]
クロスビューペアデータの部分的マッチングを含む,より実用的なUAV測位タスクを提案する。
実験により,UAV測地のためのデータとトレーニング手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-25T13:33:28Z) - Weakly-supervised Camera Localization by Ground-to-satellite Image Registration [52.54992898069471]
本稿では,地対衛星画像登録のための弱教師付き学習戦略を提案する。
地上画像ごとに正の衛星画像と負の衛星画像を導き出す。
また,クロスビュー画像の相対回転推定のための自己超越戦略を提案する。
論文 参考訳(メタデータ) (2024-09-10T12:57:16Z) - Style Alignment based Dynamic Observation Method for UAV-View Geo-localization [7.185123213523453]
UAVビューのジオローカライゼーションのためのスタイルアライメントに基づく動的観察法を提案する。
具体的には、ドローンビュー画像の多様な視覚スタイルから衛星画像の統一的な視覚スタイルへ変換するスタイルアライメント戦略を導入する。
動的観察モジュールは、人間の観察習慣を模倣して画像の空間分布を評価するように設計されている。
論文 参考訳(メタデータ) (2024-07-03T06:19:42Z) - Leveraging edge detection and neural networks for better UAV localization [5.781342655426309]
地球航法衛星システム(GNSS)を欠いた環境下で無人航空機(UAV)をジオローカライズするための新しい手法を提案する。
現在の最先端技術では、オフラインで訓練されたエンコーダを使用して、UAVの現在のビューのベクトル表現(埋め込み)を生成する。
本研究では,これらの手法の性能を画像の前処理によって大幅に向上し,エッジを抽出できることを実証する。
論文 参考訳(メタデータ) (2024-04-09T10:56:46Z) - View Distribution Alignment with Progressive Adversarial Learning for
UAV Visual Geo-Localization [10.442998017077795]
無人航空機(UAV)の視覚的ジオローカライゼーションは、異なるビュー、すなわちUAVビューと衛星ビューから取得した同じ地理的ターゲットの画像とマッチングすることを目的としている。
以前の作業では、UAVや衛星が撮影した画像を共有特徴空間にマッピングし、位置に依存した特徴を学習するための分類フレームワークを使用していた。
本稿では,2つのビューの分布アライメントを導入し,共通空間における距離を短縮する。
論文 参考訳(メタデータ) (2024-01-03T06:58:09Z) - Multiview Aerial Visual Recognition (MAVREC): Can Multi-view Improve
Aerial Visual Perception? [57.77643186237265]
我々は、異なる視点から同期シーンを記録するビデオデータセットであるMultiview Aerial Visual RECgnition(MAVREC)を提示する。
MAVRECは約2.5時間、業界標準の2.7K解像度ビデオシーケンス、0.5万フレーム以上のフレーム、11万の注釈付きバウンディングボックスで構成されている。
これにより、MAVRECは地上および空中ビューのデータセットとして最大であり、ドローンベースのデータセットの中では4番目に大きい。
論文 参考訳(メタデータ) (2023-12-07T18:59:14Z) - Cross-View Visual Geo-Localization for Outdoor Augmented Reality [11.214903134756888]
地上画像のクロスビューマッチングによる測地位置推定の課題をジオレファレンス衛星画像データベースに解決する。
本稿では,新しいトランスフォーマーニューラルネットワークモデルを提案する。
いくつかのベンチマーク・クロスビュー・ジオローカライズ・データセットの実験により、我々のモデルが最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-03-28T01:58:03Z) - CVLNet: Cross-View Semantic Correspondence Learning for Video-based
Camera Localization [89.69214577915959]
本稿では,クロスビューカメラのローカライゼーション問題に対処する。
本稿では、類似性マッチングの前に、問合せカメラの衛星画像に対する相対変位を推定する。
実験は、単一の画像に基づく位置決めよりもビデオベースの位置決めの有効性を実証した。
論文 参考訳(メタデータ) (2022-08-07T07:35:17Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Multi-view Drone-based Geo-localization via Style and Spatial Alignment [47.95626612936813]
マルチビュー・マルチソース・ジオローカライゼーションは、ドローンビュー画像と衛星ビュー画像とを事前アノテーション付きGPSタグとマッチングすることにより、GPS位置決めの重要な補助的手法として機能する。
パターンを整列させるエレガントな配向に基づく手法を提案し、整列部分特徴を抽出する新しい分岐を導入する。
論文 参考訳(メタデータ) (2020-06-23T15:44:02Z) - Where am I looking at? Joint Location and Orientation Estimation by
Cross-View Matching [95.64702426906466]
ジオタグ付き空中画像の大規模データベースを考えると、クロスビューなジオローカライゼーションは問題となる。
地上画像と空中画像の向きを知ることは、これらの2つのビュー間のあいまいさを著しく軽減することができる。
局所化時の横方向のアライメントを推定する動的類似マッチングネットワークを設計する。
論文 参考訳(メタデータ) (2020-05-08T05:21:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。