Microcanonical Langevin Ensembles: Advancing the Sampling of Bayesian Neural Networks
- URL: http://arxiv.org/abs/2502.06335v1
- Date: Mon, 10 Feb 2025 10:36:42 GMT
- Title: Microcanonical Langevin Ensembles: Advancing the Sampling of Bayesian Neural Networks
- Authors: Emanuel Sommer, Jakob Robnik, Giorgi Nozadze, Uros Seljak, David RĂ¼gamer,
- Abstract summary: We introduce an ensembling approach that leverages strategies from optimization and a recently proposed sampler for efficient, robust and predictable sampling performance.<n>Compared to approaches based on the state-of-the-art No-U-Turn sampler, our approach delivers substantial speedups up to an order of magnitude.
- Score: 4.8767011596635275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advances, sampling-based inference for Bayesian Neural Networks (BNNs) remains a significant challenge in probabilistic deep learning. While sampling-based approaches do not require a variational distribution assumption, current state-of-the-art samplers still struggle to navigate the complex and highly multimodal posteriors of BNNs. As a consequence, sampling still requires considerably longer inference times than non-Bayesian methods even for small neural networks, despite recent advances in making software implementations more efficient. Besides the difficulty of finding high-probability regions, the time until samplers provide sufficient exploration of these areas remains unpredictable. To tackle these challenges, we introduce an ensembling approach that leverages strategies from optimization and a recently proposed sampler called Microcanonical Langevin Monte Carlo (MCLMC) for efficient, robust and predictable sampling performance. Compared to approaches based on the state-of-the-art No-U-Turn Sampler, our approach delivers substantial speedups up to an order of magnitude, while maintaining or improving predictive performance and uncertainty quantification across diverse tasks and data modalities. The suggested Microcanonical Langevin Ensembles and modifications to MCLMC additionally enhance the method's predictability in resource requirements, facilitating easier parallelization. All in all, the proposed method offers a promising direction for practical, scalable inference for BNNs.
Related papers
- Neural Importance Resampling: A Practical Sampling Strategy for Neural Quantum States [0.0]
We introduce Neural Importance Resampling (NIR), a new sampling algorithm that combines importance resampling with a separately trained autoregressive proposal network.<n>We demonstrate that NIR supports stable and scalable training, including for multi-state NQS, and mitigates issues faced by MCMC and autoregressive approaches.
arXiv Detail & Related papers (2025-07-28T04:16:17Z) - Utilising Gradient-Based Proposals Within Sequential Monte Carlo Samplers for Training of Partial Bayesian Neural Networks [3.2254941904559917]
Partial Bayesian neural networks (pBNNs) have been shown to perform competitively with fully Bayesian neural networks.<n>We introduce a new SMC-based training method for pBNNs by utilising a guided proposal and incorporating gradient-based Markov kernels.<n>We show that our new method outperforms the state-of-the-art in terms of predictive performance and optimal loss.
arXiv Detail & Related papers (2025-05-01T20:05:38Z) - Neural Flow Samplers with Shortcut Models [19.81513273510523]
Continuous flow-based neural samplers offer a promising approach to generate samples from unnormalized densities.<n>We introduce an improved estimator for these challenging quantities, employing a velocity-driven Sequential Monte Carlo method.<n>Our proposed Neural Flow Shortcut Sampler empirically outperforms existing flow-based neural samplers on both synthetic datasets and complex n-body system targets.
arXiv Detail & Related papers (2025-02-11T07:55:41Z) - Step-by-Step Reasoning for Math Problems via Twisted Sequential Monte Carlo [55.452453947359736]
We introduce a novel verification method based on Twisted Sequential Monte Carlo (TSMC)
We apply TSMC to Large Language Models by estimating the expected future rewards at partial solutions.
This approach results in a more straightforward training target that eliminates the need for step-wise human annotations.
arXiv Detail & Related papers (2024-10-02T18:17:54Z) - Amortized Bayesian Multilevel Models [9.831471158899644]
Multilevel models (MLMs) are a central building block of the Bayesian workflow.
MLMs pose significant computational challenges, often rendering their estimation and evaluation intractable within reasonable time constraints.
Recent advances in simulation-based inference offer promising solutions for addressing complex probabilistic models using deep generative networks.
We explore a family of neural network architectures that leverage the probabilistic factorization of multilevel models to facilitate efficient neural network training and subsequent near-instant posterior inference on unseen datasets.
arXiv Detail & Related papers (2024-08-23T17:11:04Z) - EAS-SNN: End-to-End Adaptive Sampling and Representation for Event-based Detection with Recurrent Spiking Neural Networks [14.046487518350792]
Spiking Neural Networks (SNNs) operate on an event-driven through sparse spike communication.
We introduce Residual Potential Dropout (RPD) and Spike-Aware Training (SAT) to regulate potential distribution.
Our method yields a 4.4% mAP improvement on the Gen1 dataset, while requiring 38% fewer parameters and only three time steps.
arXiv Detail & Related papers (2024-03-19T09:34:11Z) - Faster Stochastic Variance Reduction Methods for Compositional MiniMax
Optimization [50.10952609321302]
compositional minimax optimization is a pivotal challenge across various machine learning domains.
Current methods of compositional minimax optimization are plagued by sub-optimal complexities or heavy reliance on sizable batch sizes.
This paper introduces a novel method, called Nested STOchastic Recursive Momentum (NSTORM), which can achieve the optimal sample complexity of $O(kappa3 /epsilon3 )$.
arXiv Detail & Related papers (2023-08-18T14:57:21Z) - Collapsed Inference for Bayesian Deep Learning [36.1725075097107]
We introduce a novel collapsed inference scheme that performs Bayesian model averaging using collapsed samples.
A collapsed sample represents uncountably many models drawn from the approximate posterior.
Our proposed use of collapsed samples achieves a balance between scalability and accuracy.
arXiv Detail & Related papers (2023-06-16T08:34:42Z) - AdaSAM: Boosting Sharpness-Aware Minimization with Adaptive Learning
Rate and Momentum for Training Deep Neural Networks [76.90477930208982]
Sharpness aware (SAM) has been extensively explored as it can generalize better for training deep neural networks.
Integrating SAM with adaptive learning perturbation and momentum acceleration, dubbed AdaSAM, has already been explored.
We conduct several experiments on several NLP tasks, which show that AdaSAM could achieve superior performance compared with SGD, AMS, and SAMsGrad.
arXiv Detail & Related papers (2023-03-01T15:12:42Z) - Piecewise Deterministic Markov Processes for Bayesian Neural Networks [20.865775626533434]
Inference on modern Bayesian Neural Networks (BNNs) often relies on a variational inference treatment, imposing violated assumptions of independence and the form of the posterior.
New Piecewise Deterministic Markov Process (PDMP) samplers permit subsampling, though introduce a model specific inhomogenous Poisson Process (IPPs) which is difficult to sample from.
This work introduces a new generic and adaptive thinning scheme for sampling from IPPs, and demonstrates how this approach can accelerate the application of PDMPs for inference in BNNs.
arXiv Detail & Related papers (2023-02-17T06:38:16Z) - Data Subsampling for Bayesian Neural Networks [0.0]
Penalty Bayesian Neural Networks - PBNNs - are a new algorithm that allows the evaluation of the likelihood using subsampled batch data.
We show that PBNN achieves good predictive performance even for small mini-batch sizes of data.
arXiv Detail & Related papers (2022-10-17T14:43:35Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.