GraphMamba: An Efficient Graph Structure Learning Vision Mamba for Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2407.08255v1
- Date: Thu, 11 Jul 2024 07:56:08 GMT
- Title: GraphMamba: An Efficient Graph Structure Learning Vision Mamba for Hyperspectral Image Classification
- Authors: Aitao Yang, Min Li, Yao Ding, Leyuan Fang, Yaoming Cai, Yujie He,
- Abstract summary: GraphMamba is an efficient graph structure learning vision Mamba classification framework to achieve deep spatial-spectral information mining.
The core components of GraphMamba include the HyperMamba module for improving computational efficiency and the SpectralGCN module for adaptive spatial context awareness.
- Score: 19.740333867168108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient extraction of spectral sequences and geospatial information has always been a hot topic in hyperspectral image classification. In terms of spectral sequence feature capture, RNN and Transformer have become mainstream classification frameworks due to their long-range feature capture capabilities. In terms of spatial information aggregation, CNN enhances the receptive field to retain integrated spatial information as much as possible. However, the spectral feature-capturing architectures exhibit low computational efficiency, and CNNs lack the flexibility to perceive spatial contextual information. To address these issues, this paper proposes GraphMamba--an efficient graph structure learning vision Mamba classification framework that fully considers HSI characteristics to achieve deep spatial-spectral information mining. Specifically, we propose a novel hyperspectral visual GraphMamba processing paradigm (HVGM) that preserves spatial-spectral features by constructing spatial-spectral cubes and utilizes linear spectral encoding to enhance the operability of subsequent tasks. The core components of GraphMamba include the HyperMamba module for improving computational efficiency and the SpectralGCN module for adaptive spatial context awareness. The HyperMamba mitigates clutter interference by employing the global mask (GM) and introduces a parallel training inference architecture to alleviate computational bottlenecks. The SpatialGCN incorporates weighted multi-hop aggregation (WMA) spatial encoding to focus on highly correlated spatial structural features, thus flexibly aggregating contextual information while mitigating spatial noise interference. Extensive experiments were conducted on three different scales of real HSI datasets, and compared with the state-of-the-art classification frameworks, GraphMamba achieved optimal performance.
Related papers
- HSIMamba: Hyperpsectral Imaging Efficient Feature Learning with Bidirectional State Space for Classification [16.742768644585684]
HSIMamba is a novel framework that uses bidirectional reversed convolutional neural network pathways to extract spectral features more efficiently.
Our approach combines the operational efficiency of CNNs with the dynamic feature extraction capability of attention mechanisms found in Transformers.
This approach improves classification accuracy beyond current benchmarks and addresses computational inefficiencies encountered with advanced models like Transformers.
arXiv Detail & Related papers (2024-03-30T07:27:36Z) - Contrastive Multi-view Subspace Clustering of Hyperspectral Images based
on Graph Convolutional Networks [14.978666092012856]
Subspace clustering is an effective approach for clustering hyperspectral images.
In this study, contrastive multi-view subspace clustering of HSI was proposed based on graph convolutional networks.
The proposed model effectively improves the clustering accuracy of HSI.
arXiv Detail & Related papers (2023-12-11T02:22:10Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - Graph Networks with Spectral Message Passing [1.0742675209112622]
We introduce the Spectral Graph Network, which applies message passing to both the spatial and spectral domains.
Our results show that the Spectral GN promotes efficient training, reaching high performance with fewer training iterations despite having more parameters.
arXiv Detail & Related papers (2020-12-31T21:33:17Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Spectral Pyramid Graph Attention Network for Hyperspectral Image
Classification [5.572542792318872]
Convolutional neural networks (CNN) have made significant advances in hyperspectral image (HSI) classification.
Standard convolutional kernel neglects intrinsic connections between data points, resulting in poor region delineation and small spurious predictions.
This paper presents a novel architecture which explicitly addresses these two issues.
arXiv Detail & Related papers (2020-01-20T13:49:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.