論文の概要: UniMoD: Efficient Unified Multimodal Transformers with Mixture-of-Depths
- arxiv url: http://arxiv.org/abs/2502.06474v1
- Date: Mon, 10 Feb 2025 13:52:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:31:37.885071
- Title: UniMoD: Efficient Unified Multimodal Transformers with Mixture-of-Depths
- Title(参考訳): UniMoD:Mixture-of-Depthsを用いた高効率統一型マルチモーダルトランス
- Authors: Weijia Mao, Zhenheng Yang, Mike Zheng Shou,
- Abstract要約: UniMoDは、各タスクに個別のルータを使用して、どのトークンをプルーニングすべきかを決定するタスク対応トークンプルーニング手法である。
提案手法をShow-oとEmu3に適用し,Show-oでは約15%,Emu3では40%のトレーニングFLOPを削減した。
- 参考スコア(独自算出の注目度): 17.68867710994329
- License:
- Abstract: Unified multimodal transformers, which handle both generation and understanding tasks within a shared parameter space, have received increasing attention in recent research. Although various unified transformers have been proposed, training these models is costly due to redundant tokens and heavy attention computation. In the past, studies on large language models have demonstrated that token pruning methods, such as Mixture of Depths (MoD), can significantly improve computational efficiency. MoD employs a router to select the most important ones for processing within a transformer layer. However, directly applying MoD-based token pruning to unified transformers will result in suboptimal performance because different tasks exhibit varying levels of token redundancy. In our work, we analyze the unified transformers by (1) examining attention weight patterns, (2) evaluating the layer importance and token redundancy, and (3) analyzing task interactions. Our findings reveal that token redundancy is primarily influenced by different tasks and layers. Building on these findings, we introduce UniMoD, a task-aware token pruning method that employs a separate router for each task to determine which tokens should be pruned. We apply our method to Show-o and Emu3, reducing training FLOPs by approximately 15% in Show-o and 40% in Emu3, while maintaining or improving performance on several benchmarks. Code will be released at https://github.com/showlab/UniMoD.
- Abstract(参考訳): 近年,共有パラメータ空間内における生成タスクと理解タスクの両方を扱う統一マルチモーダルトランスが注目されている。
様々な統一変換器が提案されているが、これらのモデルの訓練は冗長なトークンと重い注意計算のためにコストがかかる。
これまで、大規模言語モデルの研究は、Mixture of Depths (MoD)のようなトークンプルーニング手法が計算効率を大幅に向上することを示した。
MoDはルータを使用して、トランス層内で処理する上で最も重要なルータを選択する。
しかし、MoDベースのトークンプルーニングを統一トランスに直接適用すると、異なるタスクが異なるレベルのトークン冗長性を示すため、最適以下の性能が得られる。
本研究では,(1)注目重みパターン,(2)重要度とトークンの冗長性の評価,(3)タスクインタラクションの分析による統合トランスフォーマーの分析を行う。
その結果,トークンの冗長性は主に異なるタスクやレイヤに影響されていることがわかった。
これらの結果に基づいて、各タスクに個別のルータを用いて、どのトークンをプルーニングすべきかを判定するタスク対応トークンプルーニング手法UniMoDを導入する。
提案手法をShow-oとEmu3に適用し,Show-oでは約15%,Emu3では40%のトレーニングFLOPを削減した。
コードはhttps://github.com/showlab/UniMoD.comでリリースされる。
関連論文リスト
- Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning [59.001091197106085]
Vision TransformerのためのMulti-Task Learning (MTL)は、複数のタスクを同時に処理することでモデル能力を向上させることを目的としている。
最近の研究は、Mixture-of-Experts(MoE)構造の設計とローランド適応(LoRA)によるマルチタスク学習の効率化に重点を置いている。
本稿では,事前学習した視覚変換器を効率的なマルチタスク学習器に変換することで,EMTAL(Efficient Multi-Task Learning)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2025-01-12T17:41:23Z) - How Redundant Is the Transformer Stack in Speech Representation Models? [1.2699529713351287]
自己教師付き音声表現モデルは、音声認識、話者識別、感情検出など様々なタスクにおいて顕著な性能を示した。
近年, 変圧器モデルの研究により, 層間に高い冗長性と, 重要な刈り取りの可能性が確認されている。
後処理を必要とせず,変換器を用いた音声表現モデルの有効性を実証する。
論文 参考訳(メタデータ) (2024-09-10T11:00:24Z) - Mixture-of-Modules: Reinventing Transformers as Dynamic Assemblies of Modules [96.21649779507831]
そこで我々は,Mix-of-modules (MoM) と呼ばれる新しいアーキテクチャを提案する。
MoMは、任意の層がその位置に関係なくトークンを計算することができるという直感によって動機付けられている。
MoMはトランスフォーマーのための統一されたフレームワークを提供するだけでなく、冗長性を減らすための柔軟で学習可能なアプローチを提供する。
論文 参考訳(メタデータ) (2024-07-09T08:50:18Z) - MoEUT: Mixture-of-Experts Universal Transformers [75.96744719516813]
ユニバーサルトランスフォーマー(UT)は、合成一般化の学習において標準トランスフォーマーよりも有利である。
層共有は、同じ次元を持つ非共有モデルと比較してパラメータ数を大幅に削減する。
従来の作業では、言語モデリングのようなパラメータ数の支配的なタスクと競合する共有層トランスフォーマー設計の提案に成功しなかった。
論文 参考訳(メタデータ) (2024-05-25T03:24:32Z) - DeMT: Deformable Mixer Transformer for Multi-Task Learning of Dense
Prediction [40.447092963041236]
変形可能なCNNとクエリベースのTransformerの利点を組み合わせた新しいMTLモデルを提案する。
提案手法は, 単純かつ効率的なエンコーダ・デコーダアーキテクチャに基づいている。
我々のモデルはGFLOPを少なくし、現在のTransformerやCNNベースの競合モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-01-09T16:00:15Z) - AutoMoE: Heterogeneous Mixture-of-Experts with Adaptive Computation for
Efficient Neural Machine Translation [104.0979785739202]
ニューラルネットワーク翻訳(NMT)タスクにおいて、Mixture-of-Expert(MoE)モデルが最先端のパフォーマンスを得た。
既存のMoEモデルは、ネットワーク全体に同じサイズの専門家が一様に配置される均質な設計を主に考慮している。
計算制約下での不均一なMoEを設計するためのフレームワークであるAutoMoEを開発した。
論文 参考訳(メタデータ) (2022-10-14T05:32:17Z) - MulT: An End-to-End Multitask Learning Transformer [66.52419626048115]
我々はMulTと呼ばれるエンドツーエンドのマルチタスク学習トランスフォーマフレームワークを提案し、複数のハイレベル視覚タスクを同時に学習する。
本フレームワークは,入力画像を共有表現にエンコードし,タスク固有のトランスフォーマーベースのデコーダヘッドを用いて各視覚タスクの予測を行う。
論文 参考訳(メタデータ) (2022-05-17T13:03:18Z) - Ensemble Transformer for Efficient and Accurate Ranking Tasks: an
Application to Question Answering Systems [99.13795374152997]
本研究では,大きな変圧器のアンサンブルを1つの小さなモデルに蒸留するニューラルネットワークを提案する。
MHSモデルは、入力をエンコードするために使用されるトランスフォーマー層のスタックと、ランキングヘッドのセットの2つのコンポーネントから構成される。
従来の蒸留法とは異なり,本手法では,アンサンブルメンバーの多様性を保ちつつ,個々のモデルを教師として利用している。
論文 参考訳(メタデータ) (2022-01-15T06:21:01Z) - DoT: An efficient Double Transformer for NLP tasks with tables [3.0079490585515343]
DoTは、問題を2つのサブタスクに分解するダブルトランスフォーマーモデルである。
少ない精度でDoTはトレーニング時間と推論時間を少なくとも50%改善することを示した。
論文 参考訳(メタデータ) (2021-06-01T13:33:53Z) - Transformer is All You Need: Multimodal Multitask Learning with a
Unified Transformer [24.870827400461682]
本稿では,異なる領域にまたがるタスクを同時に学習するUnified Transformerモデルを提案する。
トランスエンコーダデコーダアーキテクチャに基づいて、UniTモデルは各入力モダリティをエンコーダでエンコーダし、各タスクで予測を行います。
モデル全体は、各タスクからの損失を伴うエンドツーエンドのトレーニングを共同で行います。
論文 参考訳(メタデータ) (2021-02-22T04:45:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。