論文の概要: Sentient: Multi-Scenario Behavioral Intent Analysis for Advanced Persistent Threat Detection
- arxiv url: http://arxiv.org/abs/2502.06521v1
- Date: Mon, 10 Feb 2025 14:43:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:28:57.262680
- Title: Sentient: Multi-Scenario Behavioral Intent Analysis for Advanced Persistent Threat Detection
- Title(参考訳): Sentient: 高度な脅威検出のためのマルチシナリオ行動インテント分析
- Authors: Wenhao Yan, Ning An, Wei Qiao, Weiheng Wu, Bo Jiang, Yuling Liu, Zhigang Lu, Junrong Liu,
- Abstract要約: Sentientは,監査ログからノードレベルの脅威を検出する行動意図分析に基づく脅威検出システムである。
実世界とシミュレートされた攻撃の両方をカバーする3つの広く使われているデータセットに対して、Sentientを評価する。
- 参考スコア(独自算出の注目度): 5.695117749825047
- License:
- Abstract: Advanced Persistent Threats (APTs) are challenging to detect due to their complexity and stealth. To mitigate such attacks, many approaches utilize provenance graphs to model entities and their dependencies, detecting the covert and persistent nature of APTs. However, existing methods face several challenges: 1) Environmental noise hinders precise detection; 2) Reliance on hard-to-obtain labeled data and prior knowledge of APTs limits their ability to detect unknown threats; 3) The difficulty in capturing long-range interaction dependencies, leading to the loss of critical context. We propose Sentient, a threat detection system based on behavioral intent analysis that detects node-level threats from audit logs. Sentient constructs a provenance graph from the audit logs and uses this graph to build multiple scenarios. By combining graph comprehension with multiple scenario comprehension, Sentient learns normal interaction behaviors. Sentient detects anomalies by identifying interactions that deviate from the established behavior patterns. We evaluated Sentient on three widely used datasets covering both real-world and simulated attacks. The results confirm that Sentient consistently delivers strong detection performance. Notably, Sentient achieves entity-level APT detection with a precision of 96% and a recall of 99%.
- Abstract(参考訳): Advanced Persistent Threats (APT)は、その複雑さとステルスにより検出が困難である。
このような攻撃を軽減するため、多くのアプローチでは、エンティティとその依存関係をモデル化するために証明グラフを使用し、APTの隠蔽性と永続性を検出する。
しかし、既存の手法はいくつかの課題に直面している。
1)環境騒音は、正確な検出を妨げる。
2 ラベル付きデータの信頼性及びAPTの事前知識は、未知の脅威を検出する能力に制限される。
3) 長距離の相互依存を捉えることの難しさが, 重要なコンテキストの喪失につながった。
本稿では,監査ログからノードレベルの脅威を検出する行動意図分析に基づく脅威検出システムであるSentientを提案する。
Sentientは監査ログからプロファイランスグラフを構築し、このグラフを使用して複数のシナリオを構築する。
グラフ理解と複数のシナリオ理解を組み合わせることで、Sentientは通常の相互作用の振る舞いを学ぶ。
Sentientは、確立した行動パターンから逸脱する相互作用を識別することで異常を検出する。
実世界とシミュレートされた攻撃の両方をカバーする3つの広く使われているデータセット上でSentientを評価した。
結果は、Sentientが一貫して強力な検出性能を提供することを確認した。
特に、SentientはエンティティレベルのAPT検出を精度96%、リコール99%で達成している。
関連論文リスト
- A Federated Learning Approach for Multi-stage Threat Analysis in Advanced Persistent Threat Campaigns [25.97800399318373]
高度な永続的脅威(APT)のようなマルチステージの脅威は、データを盗み、インフラストラクチャを破壊することによって深刻なリスクを引き起こす。
APTは新たな攻撃ベクトルを使用し、ネットワークの存在を隠蔽することでシグネチャベースの検出を回避する。
本稿では,APTを検出するための3段階の非教師付きフェデレーション学習(FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-19T03:34:41Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
敵の摂動に対するディープニューラルネットワークの脆弱性は、コンピュータビジョンコミュニティで広く認識されている。
現在のアルゴリズムは、通常、自然および敵対的なデータの識別的分解を通じて、敵のパターンを検出する。
空間周波数Krawtchouk分解に基づく識別検出器を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:18:59Z) - TBDetector:Transformer-Based Detector for Advanced Persistent Threats
with Provenance Graph [17.518551273453888]
本稿では,ATT攻撃検出のための変圧器を用いた高度な脅威検出手法TBDetectorを提案する。
出現グラフは、豊富な歴史的情報を提供し、歴史的な相関能力に強力な攻撃を与える。
提案手法の有効性を評価するため,5つの公開データセットを用いて実験を行った。
論文 参考訳(メタデータ) (2023-04-06T03:08:09Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Detecting Adversarial Perturbations in Multi-Task Perception [32.9951531295576]
本稿では,複雑な視覚タスクのマルチタスク認識に基づく,新たな対向摂動検出手法を提案する。
入力画像の抽出されたエッジと深度出力とセグメンテーション出力との不整合により、逆摂動を検出する。
5%の偽陽性率を仮定すると、画像の最大100%は逆摂動として正しく検出され、摂動の強さに依存する。
論文 参考訳(メタデータ) (2022-03-02T15:25:17Z) - Multi-Expert Adversarial Attack Detection in Person Re-identification
Using Context Inconsistency [47.719533482898306]
本稿では,個人再識別(ReID)システムに対する悪意のある攻撃を検知するための,Multi-Expert Adversarial Detection(MEAAD)アプローチを提案する。
ReIDに対する最初の敵攻撃検出アプローチとして、MEAADは様々な敵攻撃を効果的に検出し、高いROC-AUC(97.5%以上)を達成する。
論文 参考訳(メタデータ) (2021-08-23T01:59:09Z) - Exploiting Multi-Object Relationships for Detecting Adversarial Attacks
in Complex Scenes [51.65308857232767]
ディープニューラルネットワーク(DNN)をデプロイするビジョンシステムは、敵の例に弱いことが知られている。
近年の研究では、入力データの固有成分のチェックは、敵攻撃を検出するための有望な方法であることが示された。
言語モデルを用いてコンテキスト整合性チェックを行う新しい手法を開発した。
論文 参考訳(メタデータ) (2021-08-19T00:52:10Z) - A Rule Mining-Based Advanced Persistent Threats Detection System [2.75264806444313]
高度な永続的脅威(APT)は、標的組織から貴重な情報を盗もうとするステルスなサイバー攻撃である。
活動間の因果関係を見つけ出し、不審な出来事を発生させるのに役立てることができるため、希少な追跡と痕跡採掘は有望であると考えられている。
プロセスアクティビティを反映するOSに依存しない特徴を活用する教師なしの手法を導入し,プロファイランストレースから現実的なAPTライクな攻撃を検出する。
論文 参考訳(メタデータ) (2021-05-20T22:13:13Z) - Unsupervised Anomaly Detectors to Detect Intrusions in the Current
Threat Landscape [0.11470070927586014]
本研究では,Isolation Forests,One-Class Support Vector Machines,Self-Organizing Mapsが侵入検知用よりも有効であることを示した。
不安定、分散、あるいは非可逆的行動による攻撃を、ファジング、ワーム、ボットネットなどによって検出することがより困難である点を詳述する。
論文 参考訳(メタデータ) (2020-12-21T14:06:58Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。