evclust: Python library for evidential clustering
- URL: http://arxiv.org/abs/2502.06587v1
- Date: Mon, 10 Feb 2025 15:53:26 GMT
- Title: evclust: Python library for evidential clustering
- Authors: Armel Soubeiga, Violaine Antoine,
- Abstract summary: Evidential clustering uses the Dempster-Shafer theory of belief functions to represent uncertainty.
The Python framework evclust offers a suite of efficient evidence clustering algorithms as well as tools for visualizing, evaluating and analyzing credal partitions.
- Score: 0.6215404942415159
- License:
- Abstract: A recent developing trend in clustering is the advancement of algorithms that not only identify clusters within data, but also express and capture the uncertainty of cluster membership. Evidential clustering addresses this by using the Dempster-Shafer theory of belief functions, a framework designed to manage and represent uncertainty. This approach results in a credal partition, a structured set of mass functions that quantify the uncertain assignment of each object to potential groups. The Python framework evclust, presented in this paper, offers a suite of efficient evidence clustering algorithms as well as tools for visualizing, evaluating and analyzing credal partitions.
Related papers
- Cluster Specific Representation Learning [1.6727186769396276]
Despite its widespread application, there is no established definition of a good'' representation.
We propose a downstream-agnostic formulation: when inherent clusters exist in the data, the representations should be specific to each cluster.
Under this idea, we develop a meta-algorithm that jointly learns cluster-specific representations and cluster assignments.
arXiv Detail & Related papers (2024-12-04T16:59:37Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - From A-to-Z Review of Clustering Validation Indices [4.08908337437878]
We review and evaluate the performance of internal and external clustering validation indices on the most common clustering algorithms.
We suggest a classification framework for examining the functionality of both internal and external clustering validation measures.
arXiv Detail & Related papers (2024-07-18T13:52:02Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Cluster-level Group Representativity Fairness in $k$-means Clustering [3.420467786581458]
Clustering algorithms could generate clusters such that different groups are disadvantaged within different clusters.
We develop a clustering algorithm, building upon the centroid clustering paradigm pioneered by classical algorithms.
We show that our method is effective in enhancing cluster-level group representativity fairness significantly at low impact on cluster coherence.
arXiv Detail & Related papers (2022-12-29T22:02:28Z) - Seeking the Truth Beyond the Data. An Unsupervised Machine Learning
Approach [0.0]
Clustering is an unsupervised machine learning methodology where unlabeled elements/objects are grouped together.
This article provides a deep description of the most widely used clustering methodologies.
It emphasizes the comparison of these algorithms' clustering efficiency based on 3 datasets.
arXiv Detail & Related papers (2022-07-14T14:22:36Z) - KnAC: an approach for enhancing cluster analysis with background
knowledge and explanations [0.20999222360659603]
We present Knowledge Augmented Clustering (KnAC), which main goal is to confront expert-based labelling with automated clustering.
KnAC can serve as an augmentation of an arbitrary clustering algorithm, making the approach robust and model-agnostic.
arXiv Detail & Related papers (2021-12-16T10:13:47Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Unsupervised Person Re-identification via Softened Similarity Learning [122.70472387837542]
Person re-identification (re-ID) is an important topic in computer vision.
This paper studies the unsupervised setting of re-ID, which does not require any labeled information.
Experiments on two image-based and video-based datasets demonstrate state-of-the-art performance.
arXiv Detail & Related papers (2020-04-07T17:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.