MoETuner: Optimized Mixture of Expert Serving with Balanced Expert Placement and Token Routing
- URL: http://arxiv.org/abs/2502.06643v1
- Date: Mon, 10 Feb 2025 16:34:36 GMT
- Title: MoETuner: Optimized Mixture of Expert Serving with Balanced Expert Placement and Token Routing
- Authors: Seokjin Go, Divya Mahajan,
- Abstract summary: Mixture-of-Experts (MoE) model architecture has emerged as a promising solution for scaling transformer models efficiently.<n>MoE models need to be distributed across GPU devices, thus face critical performance bottlenecks.<n>We propose an optimal expert-to- GPU assignment that minimizes token routing costs and token processing balances across devices.
- Score: 0.6445605125467574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mixture-of-Experts (MoE) model architecture has emerged as a promising solution for scaling transformer models efficiently, offering sparse activation that reduces computational costs while increasing model capacity. However, as MoE models scale, they need to be distributed across GPU devices, thus face critical performance bottlenecks due to their large memory footprint. Expert parallelism distributes experts across GPUs, however, faces key challenges including an unbalanced token routing and expert activation, resulting in communication tail latency and processing inefficiencies. While existing solutions address some of these issues, they fail to resolve the dual challenges of load imbalance and communication skew. The imbalance in token processing load across experts causes uneven processing times on different GPUs, while communication skew between GPUs leads to unbalanced inter-GPU data transfers. These factors degrade the performance of MoE models by increasing tail latency and reducing overall throughput. To address these limitations, we propose an Integer Linear Programming (ILP) formulation to optimize expert placement by jointly considering token load, communication, and computation costs. We exploit the property that there is a token routing dependency across layers, where tokens routed to a specific expert in one layer are likely to be routed to a limited set of experts in the subsequent layer. Our solution, MoETuner, offers an optimal expert-to-GPU assignment that minimizes inter-GPU token routing costs and balances token processing across devices, thereby reducing tail latency and end-to-end execution time. Experimental results demonstrate 9.3% and 17.5% of end-to-end speedups for single-node and multi-node inference respectively, showcasing the potential of our ILP-based optimization for offering expert parallel solutions for next-generation MoEs.
Related papers
- D$^{2}$MoE: Dual Routing and Dynamic Scheduling for Efficient On-Device MoE-based LLM Serving [14.607254882119507]
Combination of experts (MoE) model is a sparse variant of large language models (LLMs)
Despite its benefits, MoE is still too expensive to deploy on resource-constrained edge devices.
We propose D$2$MoE, an algorithm-system co-design framework that matches diverse task requirements by dynamically allocating the most proper bit-width to each expert.
arXiv Detail & Related papers (2025-04-17T05:37:35Z) - Task-Oriented Feature Compression for Multimodal Understanding via Device-Edge Co-Inference [49.77734021302196]
We propose a task-oriented feature compression (TOFC) method for multimodal understanding in a device-edge co-inference framework.
To enhance compression efficiency, multiple entropy models are adaptively selected based on the characteristics of the visual features.
Results show that TOFC achieves up to 60% reduction in data transmission overhead and 50% reduction in system latency.
arXiv Detail & Related papers (2025-03-17T08:37:22Z) - Accelerating MoE Model Inference with Expert Sharding [1.4733737463429546]
Mixture of experts (MoE) models achieve state-of-the-art results in language modeling but suffer from inefficient hardware utilization due to imbalanced token routing and communication overhead.
We introduce MoEShard, an inference system that achieves perfect load balancing through tensor sharding of MoE experts.
arXiv Detail & Related papers (2025-03-11T14:15:01Z) - ExpertFlow: Optimized Expert Activation and Token Allocation for Efficient Mixture-of-Experts Inference [41.41316718220569]
ExpertFlow is designed to enhance inference efficiency by accommodating flexible routing and enabling efficient expert scheduling between CPU and GPU.
Our experiments demonstrate that ExpertFlow achieves up to 93.72% GPU memory savings and enhances inference speed by 2 to 10 times compared to baseline methods.
arXiv Detail & Related papers (2024-10-23T15:24:54Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - LocMoE: A Low-Overhead MoE for Large Language Model Training [13.153904674287546]
We propose a novel routing strategy that combines load balance and locality by converting partial inter-node communication to that of intra-node.
The proposed LocMoE reduces training time per epoch by 12.68% to 22.24% compared to classical routers.
arXiv Detail & Related papers (2024-01-25T03:36:39Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Straggler-aware Distributed Learning: Communication Computation Latency
Trade-off [56.08535873173518]
Straggling workers can be tolerated by assigning redundant computations and coding across data and computations.
In most existing schemes, each non-straggling worker transmits one message per iteration to the parameter server (PS) after completing all its computations.
Imposing such a limitation results in two main drawbacks; over-computation due to inaccurate prediction of the straggling behaviour, and under-utilization due to treating workers as straggler/non-straggler.
arXiv Detail & Related papers (2020-04-10T08:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.