論文の概要: In-Context Learning (and Unlearning) of Length Biases
- arxiv url: http://arxiv.org/abs/2502.06653v1
- Date: Mon, 10 Feb 2025 16:43:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:32:41.641706
- Title: In-Context Learning (and Unlearning) of Length Biases
- Title(参考訳): 長生物学の文脈内学習(と未学習)
- Authors: Stephanie Schoch, Yangfeng Ji,
- Abstract要約: モデルが予測のためにコンテキストウィンドウで長さバイアスを学習することを示す。
さらに、モデルが示すバイアスのレベルを変調する要因を実験的に分析する。
これは、コストのかかるパラメータ更新を必要とせず、モデル予測の振る舞いを嫌う場合に、コンテキスト内学習のパワーを明らかにする。
- 参考スコア(独自算出の注目度): 19.740652268957522
- License:
- Abstract: Large language models have demonstrated strong capabilities to learn in-context, where exemplar input-output pairings are appended to the prompt for demonstration. However, existing work has demonstrated the ability of models to learn lexical and label biases in-context, which negatively impacts both performance and robustness of models. The impact of other statistical data biases remains under-explored, which this work aims to address. We specifically investigate the impact of length biases on in-context learning. We demonstrate that models do learn length biases in the context window for their predictions, and further empirically analyze the factors that modulate the level of bias exhibited by the model. In addition, we show that learning length information in-context can be used to counter the length bias that has been encoded in models (e.g., via fine-tuning). This reveals the power of in-context learning in debiasing model prediction behaviors without the need for costly parameter updates.
- Abstract(参考訳): 大規模な言語モデルは、インコンテキストで学習する強力な能力を示しており、典型的なインプットとアウトプットのペアリングがデモのプロンプトに付加される。
しかし、既存の研究は、モデルの性能と堅牢性の両方に悪影響を及ぼす語彙やラベルのバイアスをコンテキスト内で学習する能力を示している。
他の統計データのバイアスの影響はいまだ解明されていないが、この研究はそれに対処することを目指している。
具体的には,文脈内学習における長さバイアスの影響について検討する。
モデルが予測のためにコンテキストウィンドウで長さバイアスを学習することを示し、さらにモデルが提示するバイアスのレベルを変調する要因を経験的に分析する。
さらに,テキスト中の学習長情報を用いて,モデルに符号化された長さバイアス(例えば,微調整による)に対処できることを示す。
これは、コストのかかるパラメータ更新を必要とせず、モデル予測の振る舞いを嫌う場合に、コンテキスト内学習のパワーを明らかにする。
関連論文リスト
- On the Foundations of Shortcut Learning [20.53986437152018]
予測と可用性が形状モデルの特徴的利用とどのように相互作用するかを考察する。
線形モデルは比較的偏りがないが、ReLUやTanhの単位を持つ単一の隠蔽層を導入するとバイアスが生じる。
論文 参考訳(メタデータ) (2023-10-24T22:54:05Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - Fairness-guided Few-shot Prompting for Large Language Models [93.05624064699965]
インコンテキスト学習は、トレーニング例、例えば順、プロンプトフォーマットのバリエーションによって、高い不安定性に悩まされる可能性がある。
ラベルや属性に対する固定的なプロンプトの予測バイアスを評価するための指標を導入する。
そこで本研究では,テキスト内学習の性能向上のための最寄りのプロンプトを特定するための,欲求探索に基づく新しい探索手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T12:28:25Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
大量のトレーニングデータが、最先端のNLPモデルの高性能化の大きな理由の1つである。
トレーニングデータがどのように予測に影響を及ぼすかを記述するための言語を,因果的フレームワークを通じて提供する。
我々のフレームワークは、高価なモデルの再訓練の必要性を回避し、観測データのみに基づいて因果効果を推定することができる。
論文 参考訳(メタデータ) (2022-07-28T17:36:24Z) - Influence Tuning: Demoting Spurious Correlations via Instance
Attribution and Instance-Driven Updates [26.527311287924995]
インフルエンスチューニングは、データの急激なパターンからモデルを分解するのに役立ちます。
制御された設定では、インフルエンスチューニングは、データの急激なパターンからモデルを分解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-07T06:59:46Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - Improving Robustness by Augmenting Training Sentences with
Predicate-Argument Structures [62.562760228942054]
データセットバイアスに対するロバスト性を改善する既存のアプローチは、主にトレーニング目標の変更に焦点を当てている。
本稿では,学習データ中の入力文に対応する述語句構造を付加することを提案する。
特定のバイアスを対象とせずに、文の増大は、複数のバイアスに対してトランスフォーマーモデルの堅牢性を向上することを示す。
論文 参考訳(メタデータ) (2020-10-23T16:22:05Z) - CausaLM: Causal Model Explanation Through Counterfactual Language Models [33.29636213961804]
CausaLMは、対実言語表現モデルを用いた因果モデル説明を作成するためのフレームワークである。
本稿では,BERT のような言語表現モデルが,ある意味ある概念に対する対実表現を効果的に学習できることを示す。
本手法の副産物は,テストされた概念の影響を受けない言語表現モデルである。
論文 参考訳(メタデータ) (2020-05-27T15:06:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。