A Frontier AI Risk Management Framework: Bridging the Gap Between Current AI Practices and Established Risk Management
- URL: http://arxiv.org/abs/2502.06656v3
- Date: Wed, 19 Feb 2025 16:05:47 GMT
- Title: A Frontier AI Risk Management Framework: Bridging the Gap Between Current AI Practices and Established Risk Management
- Authors: Simeon Campos, Henry Papadatos, Fabien Roger, ChloƩ Touzet, Otter Quarks, Malcolm Murray,
- Abstract summary: The recent development of powerful AI systems has highlighted the need for robust risk management frameworks.
This paper presents a comprehensive risk management framework for the development of frontier AI.
- Score: 0.0
- License:
- Abstract: The recent development of powerful AI systems has highlighted the need for robust risk management frameworks in the AI industry. Although companies have begun to implement safety frameworks, current approaches often lack the systematic rigor found in other high-risk industries. This paper presents a comprehensive risk management framework for the development of frontier AI that bridges this gap by integrating established risk management principles with emerging AI-specific practices. The framework consists of four key components: (1) risk identification (through literature review, open-ended red-teaming, and risk modeling), (2) risk analysis and evaluation using quantitative metrics and clearly defined thresholds, (3) risk treatment through mitigation measures such as containment, deployment controls, and assurance processes, and (4) risk governance establishing clear organizational structures and accountability. Drawing from best practices in mature industries such as aviation or nuclear power, while accounting for AI's unique challenges, this framework provides AI developers with actionable guidelines for implementing robust risk management. The paper details how each component should be implemented throughout the life-cycle of the AI system - from planning through deployment - and emphasizes the importance and feasibility of conducting risk management work prior to the final training run to minimize the burden associated with it.
Related papers
- Multi-Agent Risks from Advanced AI [90.74347101431474]
Multi-agent systems of advanced AI pose novel and under-explored risks.
We identify three key failure modes based on agents' incentives, as well as seven key risk factors.
We highlight several important instances of each risk, as well as promising directions to help mitigate them.
arXiv Detail & Related papers (2025-02-19T23:03:21Z) - Risk Sources and Risk Management Measures in Support of Standards for General-Purpose AI Systems [2.3266896180922187]
We compile an extensive catalog of risk sources and risk management measures for general-purpose AI systems.
This work involves identifying technical, operational, and societal risks across model development, training, and deployment stages.
The catalog is released under a public domain license for ease of direct use by stakeholders in AI governance and standards.
arXiv Detail & Related papers (2024-10-30T21:32:56Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - AI Risk Categorization Decoded (AIR 2024): From Government Regulations to Corporate Policies [88.32153122712478]
We identify 314 unique risk categories organized into a four-tiered taxonomy.
At the highest level, this taxonomy encompasses System & Operational Risks, Content Safety Risks, Societal Risks, and Legal & Rights Risks.
We aim to advance AI safety through information sharing across sectors and the promotion of best practices in risk mitigation for generative AI models and systems.
arXiv Detail & Related papers (2024-06-25T18:13:05Z) - AI Risk Management Should Incorporate Both Safety and Security [185.68738503122114]
We argue that stakeholders in AI risk management should be aware of the nuances, synergies, and interplay between safety and security.
We introduce a unified reference framework to clarify the differences and interplay between AI safety and AI security.
arXiv Detail & Related papers (2024-05-29T21:00:47Z) - AI and the Iterable Epistopics of Risk [1.26404863283601]
The risks AI presents to society are broadly understood to be manageable through general calculus.
This paper elaborates how risk is apprehended and managed by a regulator, developer and cyber-security expert.
arXiv Detail & Related papers (2024-04-29T13:33:22Z) - Approaching Emergent Risks: An Exploratory Study into Artificial Intelligence Risk Management within Financial Organisations [0.0]
This study aims to contribute to the understanding of AI risk management in organisations through an exploratory empirical investigation into these practices.
In-depth insights are gained through interviews with nine practitioners from different organisations within the UK financial sector.
The findings of this study unearth levels of risk management framework readiness and prevailing approaches to risk management at both a processual and organisational level.
arXiv Detail & Related papers (2024-04-08T20:28:22Z) - Application of the NIST AI Risk Management Framework to Surveillance Technology [1.5442389863546546]
This study offers an in-depth analysis of the application and implications of the National Institute of Standards and Technology's AI Risk Management Framework (NIST AI RMF)
Given the inherently high-risk and consequential nature of facial recognition systems, our research emphasizes the critical need for a structured approach to risk management in this sector.
arXiv Detail & Related papers (2024-03-22T23:07:11Z) - RiskQ: Risk-sensitive Multi-Agent Reinforcement Learning Value Factorization [49.26510528455664]
We introduce the Risk-sensitive Individual-Global-Max (RIGM) principle as a generalization of the Individual-Global-Max (IGM) and Distributional IGM (DIGM) principles.
We show that RiskQ can obtain promising performance through extensive experiments.
arXiv Detail & Related papers (2023-11-03T07:18:36Z) - Actionable Guidance for High-Consequence AI Risk Management: Towards
Standards Addressing AI Catastrophic Risks [12.927021288925099]
Artificial intelligence (AI) systems can present risks of events with very high or catastrophic consequences at societal scale.
NIST is developing the NIST Artificial Intelligence Risk Management Framework (AI RMF) as voluntary guidance on AI risk assessment and management.
We provide detailed actionable-guidance recommendations focused on identifying and managing risks of events with very high or catastrophic consequences.
arXiv Detail & Related papers (2022-06-17T18:40:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.