論文の概要: Case for a unified surrogate modelling framework in the age of AI
- arxiv url: http://arxiv.org/abs/2502.06753v1
- Date: Mon, 10 Feb 2025 18:31:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:29:32.829011
- Title: Case for a unified surrogate modelling framework in the age of AI
- Title(参考訳): AI時代の統一サロゲートモデリングフレームワークの事例
- Authors: Elizaveta Semenova,
- Abstract要約: 我々は,サロゲートモデルの開発と評価をガイドする統合フレームワークの必要性を論じる。
本稿では,サロゲートモデリングの信頼性の向上,学際的知識伝達の促進,科学的な進歩の促進を図る。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Surrogate models are widely used in natural sciences, engineering, and machine learning to approximate complex systems and reduce computational costs. However, the current landscape lacks standardisation across key stages of the pipeline, including data collection, sampling design, model class selection, evaluation metrics, and downstream task performance analysis. This fragmentation limits reproducibility, reliability, and cross-domain applicability. The issue has only been exacerbated by the AI revolution and a new suite of surrogate model classes that it offers. In this position paper, we argue for the urgent need for a unified framework to guide the development and evaluation of surrogate models. We outline essential steps for constructing a comprehensive pipeline and discuss alternative perspectives, such as the benefits of domain-specific frameworks. By advocating for a standardised approach, this paper seeks to improve the reliability of surrogate modelling, foster cross-disciplinary knowledge transfer, and, as a result, accelerate scientific progress.
- Abstract(参考訳): サロゲートモデルは、複雑なシステムを近似し計算コストを削減するために、自然科学、工学、機械学習で広く使われている。
しかしながら、現在の状況では、データ収集、サンプリング設計、モデルクラスの選択、評価メトリクス、ダウンストリームタスクパフォーマンス分析など、パイプラインの重要なステージにおける標準化が欠如している。
この断片化は再現性、信頼性、ドメイン間の適用性を制限する。
この問題は、AI革命と、同社が提供する新しいサロゲートモデルクラスによって、さらに悪化しただけである。
本稿では,サロゲートモデルの開発と評価をガイドする統合フレームワークの必要性を論じる。
包括的なパイプラインを構築するための重要なステップを概説し、ドメイン固有のフレームワークのメリットなど、別の視点について議論する。
標準化されたアプローチを提唱することで,サロゲートモデリングの信頼性の向上,学際的知識伝達の促進,科学的な進歩の促進を目指す。
関連論文リスト
- When is an Embedding Model More Promising than Another? [33.540506562970776]
埋め込みは機械学習において中心的な役割を担い、あらゆるオブジェクトを数値表現に投影し、様々な下流タスクを実行するために利用することができる。
埋め込みモデルの評価は一般にドメイン固有の経験的アプローチに依存する。
本稿では, 組込み器の評価を統一的に行い, 充足性と情報性の概念を考察する。
論文 参考訳(メタデータ) (2024-06-11T18:13:46Z) - Science based AI model certification for new operational environments with application in traffic state estimation [1.2186759689780324]
さまざまなエンジニアリング領域における人工知能(AI)の役割の拡大は、AIモデルを新たな運用環境にデプロイする際の課題を強調している。
本稿では,新しい運用環境における事前学習型データ駆動モデルの適用可能性を評価するための,科学ベースの認証手法を提案する。
論文 参考訳(メタデータ) (2024-05-13T16:28:00Z) - Two-Stage Surrogate Modeling for Data-Driven Design Optimization with
Application to Composite Microstructure Generation [1.912429179274357]
本稿では,科学・工学分野における逆問題に対処する2段階の機械学習に基づく代理モデリングフレームワークを提案する。
最初の段階では、"Learner"と呼ばれる機械学習モデルは、予測出力が望ましい結果と密接に一致している入力デザイン空間内の候補の限られたセットを特定する。
第2段では、第1段で生成された縮小候補空間を評価するために、「評価器」として機能する別の代理モデルを用いる。
論文 参考訳(メタデータ) (2024-01-04T00:25:12Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Refined Mechanism Design for Approximately Structured Priors via Active
Regression [50.71772232237571]
我々は、大量の商品を戦略的入札者に販売する収益を最大化する販売業者の問題を考える。
この設定の最適かつほぼ最適のメカニズムは、特徴付けや計算が難しいことで有名である。
論文 参考訳(メタデータ) (2023-10-11T20:34:17Z) - REX: Rapid Exploration and eXploitation for AI Agents [103.68453326880456]
本稿では、REXと呼ばれるAIエージェントのための高速探索およびeXploitationのための改良されたアプローチを提案する。
REXは追加の報酬層を導入し、アッパー信頼境界(UCB)スコアに似た概念を統合し、より堅牢で効率的なAIエージェントのパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-07-18T04:26:33Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
本研究では,自然言語処理とコンピュータビジョンの分野における9つのタスクの集合であるベンチマークを作成する。
外部知識を制約としてモデル化し、各タスクの制約のソースを特定し、これらの制約を使用するさまざまなモデルを実装します。
論文 参考訳(メタデータ) (2023-02-16T16:45:36Z) - Slimmable Domain Adaptation [112.19652651687402]
重み付けモデルバンクを用いて、ドメイン間の一般化を改善するためのシンプルなフレームワーク、Slimmable Domain Adaptationを導入する。
私たちのフレームワークは、他の競合するアプローチを、複数のベンチマークにおいて非常に大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-06-14T06:28:04Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Towards Robust and Reliable Algorithmic Recourse [11.887537452826624]
モデルシフトに堅牢なリコースを見つけるための敵対的トレーニングを活用する新しいフレームワークであるRObust Algorithmic Recourse(ROAR)を提案します。
また,モデルシフトにロバストなリコースの構築の重要性を強調する詳細な理論解析を行う。
論文 参考訳(メタデータ) (2021-02-26T17:38:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。