Emotion Recognition and Generation: A Comprehensive Review of Face, Speech, and Text Modalities
- URL: http://arxiv.org/abs/2502.06803v1
- Date: Sun, 02 Feb 2025 00:11:19 GMT
- Title: Emotion Recognition and Generation: A Comprehensive Review of Face, Speech, and Text Modalities
- Authors: Rebecca Mobbs, Dimitrios Makris, Vasileios Argyriou,
- Abstract summary: We introduce the fundamental principles underlying emotion recognition and generation across facial, vocal, and textual modalities.
We discuss evaluation metrics, comparative analyses, and current limitations, shedding light on the challenges faced by researchers in the field.
- Score: 8.08366903467967
- License:
- Abstract: Emotion recognition and generation have emerged as crucial topics in Artificial Intelligence research, playing a significant role in enhancing human-computer interaction within healthcare, customer service, and other fields. Although several reviews have been conducted on emotion recognition and generation as separate entities, many of these works are either fragmented or limited to specific methodologies, lacking a comprehensive overview of recent developments and trends across different modalities. In this survey, we provide a holistic review aimed at researchers beginning their exploration in emotion recognition and generation. We introduce the fundamental principles underlying emotion recognition and generation across facial, vocal, and textual modalities. This work categorises recent state-of-the-art research into distinct technical approaches and explains the theoretical foundations and motivations behind these methodologies, offering a clearer understanding of their application. Moreover, we discuss evaluation metrics, comparative analyses, and current limitations, shedding light on the challenges faced by researchers in the field. Finally, we propose future research directions to address these challenges and encourage further exploration into developing robust, effective, and ethically responsible emotion recognition and generation systems.
Related papers
- A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
stance detection has emerged as a crucial subfield within affective computing.
Recent years have seen a surge of research interest in developing effective stance detection methods.
This paper provides a comprehensive survey of stance detection techniques on social media.
arXiv Detail & Related papers (2024-09-24T03:06:25Z) - Recent Advancement of Emotion Cognition in Large Language Models [40.23093997384297]
Emotion cognition in large language models (LLMs) is crucial for enhancing performance across various applications.
We explore the current landscape of research, which primarily revolves around emotion classification, emotionally rich response generation, and Theory of Mind assessments.
arXiv Detail & Related papers (2024-09-20T09:34:58Z) - Generative Technology for Human Emotion Recognition: A Scope Review [11.578408396744237]
This survey aims to bridge the gaps in the existing literature by conducting a comprehensive analysis of over 320 research papers until June 2024.
It will introduce the mathematical principles of different generative models and the commonly used datasets.
It will provide an in-depth analysis of how generative techniques address emotion recognition based on different modalities.
arXiv Detail & Related papers (2024-07-04T05:22:55Z) - Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfake is a technology dedicated to creating highly realistic facial images and videos under specific conditions.
This survey comprehensively reviews the latest developments in deepfake generation and detection.
We focus on researching four representative deepfake fields: face swapping, face reenactment, talking face generation, and facial attribute editing.
arXiv Detail & Related papers (2024-03-26T17:12:34Z) - Unlocking the Emotional World of Visual Media: An Overview of the
Science, Research, and Impact of Understanding Emotion [24.920797480215242]
This article provides a comprehensive overview of the field of emotion analysis in visual media.
We discuss the psychological foundations of emotion and the computational principles that underpin the understanding of emotions from images and videos.
We contend that this represents a "Holy Grail" research problem in computing and delineate pivotal directions for future inquiry.
arXiv Detail & Related papers (2023-07-25T12:47:21Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
This paper provides an overview of the computational and theoretical foundations of multimodal machine learning.
We propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification.
Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches.
arXiv Detail & Related papers (2022-09-07T19:21:19Z) - Empathetic Conversational Systems: A Review of Current Advances, Gaps,
and Opportunities [2.741266294612776]
A growing number of studies have recognized the benefits of empathy and started to incorporate empathy in conversational systems.
This paper examines this rapidly growing field using five review dimensions.
arXiv Detail & Related papers (2022-05-09T05:19:48Z) - EEG based Emotion Recognition: A Tutorial and Review [21.939910428589638]
The scientific basis of EEG-based emotion recognition in the psychological and physiological levels is introduced.
We categorize these reviewed works into different technical routes and illustrate the theoretical basis and the research motivation.
arXiv Detail & Related papers (2022-03-16T08:28:28Z) - Computational Emotion Analysis From Images: Recent Advances and Future
Directions [79.05003998727103]
In this chapter, we aim to introduce image emotion analysis (IEA) from a computational perspective.
We begin with commonly used emotion representation models from psychology.
We then define the key computational problems that the researchers have been trying to solve.
arXiv Detail & Related papers (2021-03-19T13:33:34Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
This paper surveys the components of modeling approaches relaying task impacts across various generation tasks such as storytelling, summarization, translation etc.
We present an abstraction of the imperative techniques with respect to learning paradigms, pretraining, modeling approaches, decoding and the key challenges outstanding in the field in each of them.
arXiv Detail & Related papers (2020-10-14T17:54:42Z) - Survey on the Analysis and Modeling of Visual Kinship: A Decade in the
Making [66.72253432908693]
Kinship recognition is a challenging problem with many practical applications.
We review the public resources and data challenges that enabled and inspired many to hone-in on the views.
For the tenth anniversary, the demo code is provided for the various kin-based tasks.
arXiv Detail & Related papers (2020-06-29T13:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.