Comparison of CNN-based deep learning architectures for unsteady CFD acceleration on small datasets
- URL: http://arxiv.org/abs/2502.06837v1
- Date: Thu, 06 Feb 2025 03:30:49 GMT
- Title: Comparison of CNN-based deep learning architectures for unsteady CFD acceleration on small datasets
- Authors: Sangam Khanal, Shilaj Baral, Joongoo Jeon,
- Abstract summary: This study compares advanced convolutional neural network (CNN) architectures for accelerating unsteady computational fluid dynamics (CFD) simulations.
CNNs were evaluated under identical conditions to determine their predictive accuracy and robustness in autoregressive time-series predictions.
ConvLSTM-UNet consistently outperformed other models, particularly in difference value calculation, achieving lower maximum errors and stable residuals.
- Score: 0.0
- License:
- Abstract: CFD acceleration for virtual nuclear reactors or digital twin technology is a primary goal in the nuclear industry. This study compares advanced convolutional neural network (CNN) architectures for accelerating unsteady computational fluid dynamics (CFD) simulations using small datasets based on a challenging natural convection flow dataset. The advanced architectures such as autoencoders, UNet, and ConvLSTM-UNet, were evaluated under identical conditions to determine their predictive accuracy and robustness in autoregressive time-series predictions. ConvLSTM-UNet consistently outperformed other models, particularly in difference value calculation, achieving lower maximum errors and stable residuals. However, error accumulation remains a challenge, limiting reliable predictions to approximately 10 timesteps. This highlights the need for enhanced strategies to improve long-term prediction stability. The novelty of this work lies in its fair comparison of state-of-the-art CNN models within the RePIT framework, demonstrating their potential for accelerating CFD simulations while identifying limitations under small data conditions. Future research will focus on exploring alternative models, such as graph neural networks and implicit neural representations. These efforts aim to develop a robust hybrid approach for long-term unsteady CFD acceleration, contributing to practical applications in virtual nuclear reactor.
Related papers
- DSSRNN: Decomposition-Enhanced State-Space Recurrent Neural Network for Time-Series Analysis [1.3654846342364306]
We introduce the Decomposition State-Space Recurrent Neural Network (DSSRNN)
DSSRNN is a novel framework designed for both long-term and short-term time series forecasting.
We evaluate DSSRNN's performance on indoor air quality datasets.
arXiv Detail & Related papers (2024-12-01T22:55:58Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.
We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
Deep generative learning uses certain ML models to learn the underlying distribution of existing data and generate synthetic samples that resemble the real data.
In this study, our objective is to evaluate the effectiveness of data augmentation using variational autoencoder (VAE)-based deep generative models.
We investigated whether the data augmentation leads to improved accuracy in the predictions of a deep neural network (DNN) model trained using the augmented data.
arXiv Detail & Related papers (2024-10-24T18:15:48Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
It aims to develop reduced-order/surrogate models for turbulent flow simulations using Machine Learning.
Different model structures are analyzed, with U-NET structures performing better than the standard FNO in accuracy and stability.
arXiv Detail & Related papers (2023-07-25T14:09:53Z) - How to Learn and Generalize From Three Minutes of Data:
Physics-Constrained and Uncertainty-Aware Neural Stochastic Differential
Equations [24.278738290287293]
We present a framework and algorithms to learn controlled dynamics models using neural differential equations (SDEs)
We construct the drift term to leverage a priori physics knowledge as inductive bias, and we design the diffusion term to represent a distance-aware estimate of the uncertainty in the learned model's predictions.
We demonstrate these capabilities through experiments on simulated robotic systems, as well as by using them to model and control a hexacopter's flight dynamics.
arXiv Detail & Related papers (2023-06-10T02:33:34Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.