論文の概要: A Hybrid Model for Weakly-Supervised Speech Dereverberation
- arxiv url: http://arxiv.org/abs/2502.06839v1
- Date: Thu, 06 Feb 2025 09:21:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:06:14.013569
- Title: A Hybrid Model for Weakly-Supervised Speech Dereverberation
- Title(参考訳): 弱教師付き音声デバーベレーションのハイブリッドモデル
- Authors: Louis Bahrman, Mathieu Fontaine, Gael Richard,
- Abstract要約: 本稿では,最小限の音響情報と残響(ウェット)音声を用いた音声認識システムを改善するための新たな学習手法を提案する。
実験結果から,本手法は,最先端技術よりも,音声の残響に使用される様々な客観的指標に対して,より一貫した性能を達成できることが示唆された。
- 参考スコア(独自算出の注目度): 2.731944614640173
- License:
- Abstract: This paper introduces a new training strategy to improve speech dereverberation systems using minimal acoustic information and reverberant (wet) speech. Most existing algorithms rely on paired dry/wet data, which is difficult to obtain, or on target metrics that may not adequately capture reverberation characteristics and can lead to poor results on non-target metrics. Our approach uses limited acoustic information, like the reverberation time (RT60), to train a dereverberation system. The system's output is resynthesized using a generated room impulse response and compared with the original reverberant speech, providing a novel reverberation matching loss replacing the standard target metrics. During inference, only the trained dereverberation model is used. Experimental results demonstrate that our method achieves more consistent performance across various objective metrics used in speech dereverberation than the state-of-the-art.
- Abstract(参考訳): 本稿では,最小限の音響情報と残響(ウェット)音声を用いた音声認識システムを改善するための新たな学習手法を提案する。
既存のアルゴリズムのほとんどは、ペア化された乾湿データを頼りにしており、取得が困難であり、また、残響特性を適切に把握できないようなターゲットのメトリクスに頼っている。
本手法では,残響時間(RT60)などの限られた音響情報を用いて,残響システムの訓練を行う。
生成した室内インパルス応答を用いてシステムの出力を合成し、元の残響音声と比較し、標準目標の指標に取って代わる新しい残響マッチング損失を与える。
推論中は、訓練されたデリバベーションモデルのみを使用する。
実験結果から,本手法は,最先端技術よりも,音声の残響に使用される様々な客観的指標に対して,より一貫した性能を実現することが示された。
関連論文リスト
- Unsupervised Blind Joint Dereverberation and Room Acoustics Estimation with Diffusion Models [21.669363620480333]
BUDDyと呼ばれるブラインド・デバーベーションと室内インパルス応答推定の教師なし手法を提案する。
室内のインパルス応答が不明な視覚的シナリオでは、BUDDyは音声の発声に成功している。
一般化に苦しむ教師付き手法とは異なり、BUDDyは異なる音響条件にシームレスに適応する。
論文 参考訳(メタデータ) (2024-08-14T11:31:32Z) - Diffusion-based speech enhancement with a weighted generative-supervised
learning loss [0.0]
拡散に基づく生成モデルは近年,音声強調(SE)において注目を集めている。
そこで本研究では,従来の拡散訓練目標を平均二乗誤差(MSE)損失で拡張することを提案する。
論文 参考訳(メタデータ) (2023-09-19T09:13:35Z) - Zero-Shot Voice Conditioning for Denoising Diffusion TTS Models [95.97506031821217]
本研究では,事前学習した拡散音声モデルを用いて,学習中に見つからない新人の声で音声を生成する手法を提案する。
この方法は、対象者からの短い(3秒)サンプルを必要とし、生成は、トレーニングステップなしで、推論時に操縦される。
論文 参考訳(メタデータ) (2022-06-05T19:45:29Z) - On monoaural speech enhancement for automatic recognition of real noisy
speech using mixture invariant training [33.79711018198589]
既存の混合不変訓練基準を拡張して、未ペア音声と実雑音データの両方を利用する。
実雑音音声から分離した音声の品質を向上させるためには, 未ペアクリーン音声が不可欠であることがわかった。
提案手法は、処理成果物を軽減するために、処理された信号と処理されていない信号のリミックスも行う。
論文 参考訳(メタデータ) (2022-05-03T19:37:58Z) - Discretization and Re-synthesis: an alternative method to solve the
Cocktail Party Problem [65.25725367771075]
この研究は、初めて合成に基づくアプローチがこの問題にうまく対応できることを示した。
具体的には,離散シンボルの認識に基づく音声分離/強調モデルを提案する。
離散シンボルの入力による合成モデルを利用することで、離散シンボル列の予測後、各ターゲット音声を再合成することができる。
論文 参考訳(メタデータ) (2021-12-17T08:35:40Z) - Self-Normalized Importance Sampling for Neural Language Modeling [97.96857871187052]
本研究では, 自己正規化重要度サンプリングを提案し, これまでの研究と比較すると, 本研究で考慮された基準は自己正規化されており, さらに修正を行う必要はない。
提案する自己正規化重要度サンプリングは,研究指向と生産指向の両方の自動音声認識タスクにおいて競合することを示す。
論文 参考訳(メタデータ) (2021-11-11T16:57:53Z) - Improving Noise Robustness of Contrastive Speech Representation Learning
with Speech Reconstruction [109.44933866397123]
実環境における音声認識システムの実現には,雑音の堅牢性が不可欠である。
雑音認識のための自己教師型フレームワークにより学習したノイズロスト表現を用いる。
ラベル付きデータのわずか16%で報告された最高の教師付きアプローチに匹敵するパフォーマンスを実現した。
論文 参考訳(メタデータ) (2021-10-28T20:39:02Z) - Test-Time Adaptation Toward Personalized Speech Enhancement: Zero-Shot
Learning with Knowledge Distillation [26.39206098000297]
小型消音モデルをテスト時間特異性に適応させる新しいパーソナライズ音声強調法を提案する。
このテストタイム適応の目標は、テスト話者のクリーンな音声ターゲットを使わないことです。
欠落しているクリーンな発話ターゲットの代わりに、過度に大きな教師モデルからより高度な消音結果を蒸留します。
論文 参考訳(メタデータ) (2021-05-08T00:42:03Z) - Real Time Speech Enhancement in the Waveform Domain [99.02180506016721]
本稿では,ラップトップCPU上でリアルタイムに動作する生波形を用いた因果音声強調モデルを提案する。
提案モデルは、スキップ接続を持つエンコーダデコーダアーキテクチャに基づいている。
静止ノイズや非定常ノイズを含む様々な背景ノイズを除去することができる。
論文 参考訳(メタデータ) (2020-06-23T09:19:13Z) - Statistical Context-Dependent Units Boundary Correction for Corpus-based
Unit-Selection Text-to-Speech [1.4337588659482519]
本稿では, 分割の精度を向上させるために, 単位選択テキスト音声(TTS)システムに適用するための, 話者適応のための革新的な手法を提案する。
従来の話者適応手法とは違って,言語分析手法を応用した文脈依存特性のみの利用を目標としている。
論文 参考訳(メタデータ) (2020-03-05T12:42:13Z) - Temporal-Spatial Neural Filter: Direction Informed End-to-End
Multi-channel Target Speech Separation [66.46123655365113]
ターゲット音声分離とは、混合信号からターゲット話者の音声を抽出することを指す。
主な課題は、複雑な音響環境とリアルタイム処理の要件である。
複数話者混合から対象音声波形を直接推定する時間空間ニューラルフィルタを提案する。
論文 参考訳(メタデータ) (2020-01-02T11:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。