LLM-Supported Natural Language to Bash Translation
- URL: http://arxiv.org/abs/2502.06858v1
- Date: Fri, 07 Feb 2025 19:35:55 GMT
- Title: LLM-Supported Natural Language to Bash Translation
- Authors: Finnian Westenfelder, Erik Hemberg, Miguel Tulla, Stephen Moskal, Una-May O'Reilly, Silviu Chiricescu,
- Abstract summary: We present a novel functional equivalence that combines command execution with evaluation of command outputs.
We show that parsing, in-context learning, in-weight learning, and constrained decoding can improve NL2SH accuracy by up to 32%.
- Score: 3.944966059637878
- License:
- Abstract: The Bourne-Again Shell (Bash) command-line interface for Linux systems has complex syntax and requires extensive specialized knowledge. Using the natural language to Bash command (NL2SH) translation capabilities of large language models (LLMs) for command composition circumvents these issues. However, the NL2SH performance of LLMs is difficult to assess due to inaccurate test data and unreliable heuristics for determining the functional equivalence of Bash commands. We present a manually verified test dataset of 600 instruction-command pairs and a training dataset of 40,939 pairs, increasing the size of previous datasets by 441% and 135%, respectively. Further, we present a novel functional equivalence heuristic that combines command execution with LLM evaluation of command outputs. Our heuristic can determine the functional equivalence of two Bash commands with 95% confidence, a 16% increase over previous heuristics. Evaluation of popular LLMs using our test dataset and heuristic demonstrates that parsing, in-context learning, in-weight learning, and constrained decoding can improve NL2SH accuracy by up to 32%. Our findings emphasize the importance of dataset quality, execution-based evaluation and translation method for advancing NL2SH translation. Our code is available at https://github.com/westenfelder/NL2SH
Related papers
- PURPLE: Making a Large Language Model a Better SQL Writer [14.627323505405327]
We propose PURPLE, which improves accuracy by retrieving demonstrations containing the requisite logical operator composition for the NL2 task.
PURPLE achieves a new state-of-the-art performance of 80.5% exact-set match accuracy and 87.8% execution match accuracy on the validation set of the popular NL2 benchmark.
arXiv Detail & Related papers (2024-03-29T07:01:29Z) - Native Language Identification with Large Language Models [60.80452362519818]
We show that GPT models are proficient at NLI classification, with GPT-4 setting a new performance record of 91.7% on the benchmark11 test set in a zero-shot setting.
We also show that unlike previous fully-supervised settings, LLMs can perform NLI without being limited to a set of known classes.
arXiv Detail & Related papers (2023-12-13T00:52:15Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Bench is a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks.
To evaluate both Large Language Models (LLMs) and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment.
arXiv Detail & Related papers (2023-11-16T12:03:21Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
We propose a novel framework using examples in comparison to teach LLMs to learn translation.
Our approach involves presenting the model with examples of correct and incorrect translations and using a preference loss to guide the model's learning.
Our findings offer a new perspective on fine-tuning LLMs for translation tasks and provide a promising solution for generating high-quality translations.
arXiv Detail & Related papers (2023-07-10T08:15:40Z) - CoTran: An LLM-based Code Translator using Reinforcement Learning with Feedback from Compiler and Symbolic Execution [6.72474166614441]
Existing code translation methods lack training to ensure that the translated code reliably compiles or bears substantial functional equivalence to the input code.
In our work, we fine-tune an LLM using reinforcement learning, incorporating compiler feedback, and symbolic execution (symexec)-based testing feedback.
We conduct extensive experiments comparing CoTran with 14 other code translation tools, including human-written transpilers, LLM-based translation tools, and ChatGPT.
arXiv Detail & Related papers (2023-06-11T19:47:52Z) - LeTI: Learning to Generate from Textual Interactions [60.425769582343506]
We explore LMs' potential to learn from textual interactions (LETI) that not only check their correctness with binary labels but also pinpoint and explain errors in their outputs through textual feedback.
Our focus is the code generation task, where the model produces code based on natural language instructions.
LETI iteratively fine-tunes the model, using the objective LM, on a concatenation of natural language instructions, LM-generated programs, and textual feedback.
arXiv Detail & Related papers (2023-05-17T15:53:31Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
We propose LEVER, a simple approach to improve language-to-code generation by learning to verify the generated programs with their execution results.
Specifically, we train verifiers to determine whether a program sampled from the LLMs is correct or not based on the natural language input, the program itself and its execution results.
LEVER consistently improves over the base code LLMs(4.6% to 10.9% with code-davinci) and achieves new state-of-the-art results on all of them.
arXiv Detail & Related papers (2023-02-16T18:23:22Z) - NL2CMD: An Updated Workflow for Natural Language to Bash Commands
Translation [2.099922236065961]
This paper provides two contributions to research on synthesizing Bash Commands from scratch.
First, we describe a state-of-the-art translation model used to generate Bash Commands from the corresponding English text.
Second, we introduce a new NL2CMD dataset that is automatically generated, involves minimal human intervention, and is over six times larger than prior datasets.
arXiv Detail & Related papers (2023-02-15T18:31:36Z) - PAL: Program-aided Language Models [112.94785609781503]
We present Program-Aided Language models (PaL) to understand natural language problems.
PaL offloads the solution step to a programmatic runtime such as a Python interpreter.
We set new state-of-the-art results in all 12 benchmarks.
arXiv Detail & Related papers (2022-11-18T18:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.