論文の概要: FlavorDiffusion: Predicting Food Pairings and Chemical Interactions Using Diffusion Models
- arxiv url: http://arxiv.org/abs/2502.06871v1
- Date: Sat, 08 Feb 2025 06:47:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:09:34.306183
- Title: FlavorDiffusion: Predicting Food Pairings and Chemical Interactions Using Diffusion Models
- Title(参考訳): フレーバー拡散 : 拡散モデルを用いた食品ペアリングと化学相互作用の予測
- Authors: Seo Jun Pyo,
- Abstract要約: 本稿では,フレーバー拡散モデルを用いた食品化学相互作用と成分ペアリングの予測手法を提案する。
グラフベースの埋め込み、拡散プロセス、化学特性の符号化を統合することで、FravorDiffusionはデータの不均衡に対処し、クラスタリングの品質を高める。
提案する枠組みは, 食品科学におけるスケーラブルで解釈可能な, 化学的に情報を得たソリューションを提供する, 計算ガストロノミーにおける重要な一歩である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The study of food pairing has evolved beyond subjective expertise with the advent of machine learning. This paper presents FlavorDiffusion, a novel framework leveraging diffusion models to predict food-chemical interactions and ingredient pairings without relying on chromatography. By integrating graph-based embeddings, diffusion processes, and chemical property encoding, FlavorDiffusion addresses data imbalances and enhances clustering quality. Using a heterogeneous graph derived from datasets like Recipe1M and FlavorDB, our model demonstrates superior performance in reconstructing ingredient-ingredient relationships. The addition of a Chemical Structure Prediction (CSP) layer further refines the embedding space, achieving state-of-the-art NMI scores and enabling meaningful discovery of novel ingredient combinations. The proposed framework represents a significant step forward in computational gastronomy, offering scalable, interpretable, and chemically informed solutions for food science.
- Abstract(参考訳): 食品のペアリングの研究は、機械学習の出現によって、主観的な専門知識を超えて進化してきた。
本稿では, クロマトグラフィーに頼らずに, 食品化学相互作用や成分のペアリングを予測するための拡散モデルを利用した新しいフレームワークであるFravorDiffusionを提案する。
グラフベースの埋め込み、拡散プロセス、化学特性の符号化を統合することで、FravorDiffusionはデータの不均衡に対処し、クラスタリングの品質を高める。
Recipe1M や FlavorDB などのデータセットから得られた異種グラフを用いて, 成分依存関係の再構築における優れた性能を示す。
化学構造予測(CSP)層の追加は、埋め込み空間をさらに洗練し、最先端のNMIスコアを達成し、新しい成分の組み合わせを意味のある発見を可能にする。
提案する枠組みは, 食品科学におけるスケーラブルで解釈可能な, 化学的に情報を得たソリューションを提供する, 計算ガストロノミーにおける重要な一歩である。
関連論文リスト
- Foodfusion: A Novel Approach for Food Image Composition via Diffusion Models [48.821150379374714]
大規模で高品質な食品画像合成データセットFC22kを導入する。
本研究では,前景や背景情報を処理・統合するためのFusion Moduleを組み込んだ新しい食品画像合成手法であるFoodfusionを提案する。
論文 参考訳(メタデータ) (2024-08-26T09:32:16Z) - FoodFusion: A Latent Diffusion Model for Realistic Food Image Generation [69.91401809979709]
後期拡散モデル(LDMs)のような最先端画像生成モデルでは、視覚的に印象的な食品関連画像を生成する能力が実証されている。
本稿では,テキスト記述からリアルな食品画像の忠実な合成を目的とした,潜伏拡散モデルであるFoodFusionを紹介する。
FoodFusionモデルの開発には、大規模なオープンソースフードデータセットを活用することが含まれており、30万以上のキュレーションされたイメージキャプチャペアが生成される。
論文 参考訳(メタデータ) (2023-12-06T15:07:12Z) - Diffusion Model with Clustering-based Conditioning for Food Image
Generation [22.154182296023404]
深層学習に基づく手法は、食品分類、セグメンテーション、部分サイズ推定などの画像解析に一般的に用いられている。
潜在的な解決策の1つは、データ拡張に合成食品画像を使用することである。
本稿では,高品質で代表的な食品画像を生成するための効果的なクラスタリングベースのトレーニングフレームワークであるClusDiffを提案する。
論文 参考訳(メタデータ) (2023-09-01T01:40:39Z) - MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
化学構造を視覚的に認識するためにMolGrapherを導入する。
すべての候補原子と結合をノードとして扱い、それらをグラフ化する。
グラフニューラルネットワークを用いてグラフ内の原子と結合ノードを分類する。
論文 参考訳(メタデータ) (2023-08-23T16:16:11Z) - Formulation Graphs for Mapping Structure-Composition of Battery
Electrolytes to Device Performance [0.08974531206817746]
定式化グラフ畳み込みネットワーク(F-GCN)は、個々の成分の構造-構成関係を、液体定式化全体の特性にマッピングすることができる。
このモデルは、クーロン効率(CE)のようなパフォーマンス指標と、最も低いエラーを報告された新しい電解質の定式化の特定の能力を予測するために示される。
論文 参考訳(メタデータ) (2023-07-07T19:34:43Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
分子に固有の二重レベル構造を考慮に入れたGODEを導入する。
分子は固有のグラフ構造を持ち、より広い分子知識グラフ内のノードとして機能する。
異なるグラフ構造上の2つのGNNを事前学習することにより、GODEは対応する知識グラフサブ構造と分子構造を効果的に融合させる。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Hierarchical Graph Representation Learning for the Prediction of
Drug-Target Binding Affinity [7.023929372010717]
本稿では,薬物結合親和性予測,すなわちHGRL-DTAのための新しい階層グラフ表現学習モデルを提案する。
本稿では,グローバルレベルの親和性グラフと局所レベルの分子グラフから得られた階層的表現を統合するためのメッセージブロードキャスティング機構を採用し,また,類似性に基づく埋め込みマップを設計し,未知の薬物や標的に対する表現の推論というコールドスタート問題を解決する。
論文 参考訳(メタデータ) (2022-03-22T04:50:16Z) - FoodChem: A food-chemical relation extraction model [0.0]
食品成分組成に含まれる化学物質を同定するための新しい関係抽出(RE)モデルを提案する。
BioBERTモデルは、マクロ平均F1スコアが0.902のアンバランスな拡張設定で、最良の結果を得る。
論文 参考訳(メタデータ) (2021-10-05T13:07:33Z) - Federated Learning of Molecular Properties in a Heterogeneous Setting [79.00211946597845]
これらの課題に対処するために、フェデレーションヘテロジニアス分子学習を導入する。
フェデレートラーニングにより、エンドユーザは、独立したクライアント上に分散されたトレーニングデータを保存しながら、グローバルモデルを協調的に構築できる。
FedChemは、化学におけるAI改善のための新しいタイプのコラボレーションを可能にする必要がある。
論文 参考訳(メタデータ) (2021-09-15T12:49:13Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
画像とレシピを共通の特徴空間に埋め込み、対応する画像とレシピの埋め込みが互いに近接するように学習する。
本稿では,2つのモダリティの埋め込みを正規化するためのセマンティック・一貫性とアテンション・ベース・ネットワーク(SCAN)を提案する。
食品画像や調理レシピの最先端のクロスモーダル検索戦略を,かなりの差で達成できることが示される。
論文 参考訳(メタデータ) (2020-03-09T07:41:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。