論文の概要: Chemical knowledge-informed framework for privacy-aware retrosynthesis learning
- arxiv url: http://arxiv.org/abs/2502.19119v1
- Date: Wed, 26 Feb 2025 13:13:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:58:54.628038
- Title: Chemical knowledge-informed framework for privacy-aware retrosynthesis learning
- Title(参考訳): プライバシを意識した再合成学習のための化学知識インフォームドフレームワーク
- Authors: Guikun Chen, Xu Zhang, Yi Yang, Wenguan Wang,
- Abstract要約: 現在の機械学習に基づくレトロシンセシスは、複数のソースからの反応データを1つのエッジに集め、予測モデルを訓練する。
このパラダイムは、組織の境界を越えた広範なデータ可用性を必要とするため、かなりのプライバシーリスクをもたらす。
本研究では, 化学知識インフォームド・フレームワーク (CKIF) について紹介する。
- 参考スコア(独自算出の注目度): 60.93245342663455
- License:
- Abstract: Chemical reaction data is a pivotal asset, driving advances in competitive fields such as pharmaceuticals, materials science, and industrial chemistry. Its proprietary nature renders it sensitive, as it often includes confidential insights and competitive advantages organizations strive to protect. However, in contrast to this need for confidentiality, the current standard training paradigm for machine learning-based retrosynthesis gathers reaction data from multiple sources into one single edge to train prediction models. This paradigm poses considerable privacy risks as it necessitates broad data availability across organizational boundaries and frequent data transmission between entities, potentially exposing proprietary information to unauthorized access or interception during storage and transfer. In the present study, we introduce the chemical knowledge-informed framework (CKIF), a privacy-preserving approach for learning retrosynthesis models. CKIF enables distributed training across multiple chemical organizations without compromising the confidentiality of proprietary reaction data. Instead of gathering raw reaction data, CKIF learns retrosynthesis models through iterative, chemical knowledge-informed aggregation of model parameters. In particular, the chemical properties of predicted reactants are leveraged to quantitatively assess the observable behaviors of individual models, which in turn determines the adaptive weights used for model aggregation. On a variety of reaction datasets, CKIF outperforms several strong baselines by a clear margin (e.g., ~20% performance improvement over FedAvg on USPTO-50K), showing its feasibility and superiority to stimulate further research on privacy-preserving retrosynthesis.
- Abstract(参考訳): 化学反応データは重要な資産であり、医薬品、材料科学、工業化学といった競争分野の進歩を推進している。
そのプロプライエタリな性質は、秘密の洞察と組織が守ろうとする競争上の優位性を含むことが多いため、センシティブなものだ。
しかし、この機密性の必要性とは対照的に、マシンラーニングベースのレトロシンセシスのための現在の標準トレーニングパラダイムは、複数のソースからの反応データを単一のエッジに集め、予測モデルをトレーニングする。
このパラダイムは、組織の境界を越えた広範なデータ可用性とエンティティ間の頻繁なデータ転送を必要とし、ストレージと転送の間、権限のないアクセスやインターセプションにプロプライエタリな情報を公開する必要があるため、かなりのプライバシー上のリスクをもたらす。
本研究では, 化学知識インフォームド・フレームワーク (CKIF) について紹介する。
CKIFは、プロプライエタリな反応データの機密性を損なうことなく、複数の化学組織に分散トレーニングを可能にする。
CKIFは生の反応データを収集する代わりに、反復的な化学知識によるモデルパラメータの集約を通じてレトロ合成モデルを学習する。
特に、予測された反応物の化学的性質を利用して個々のモデルの観測可能な挙動を定量的に評価し、モデル凝集に使用される適応重みを決定する。
さまざまな反応データセットにおいて、CKIFはいくつかの強力なベースラインをクリアマージン(例えば、USPTO-50KのFedAvgよりも約20%パフォーマンス改善)で上回り、その実現可能性と優位性を示し、プライバシー保護レトロシンセシスに関するさらなる研究を促進する。
関連論文リスト
- Chimera: Accurate retrosynthesis prediction by ensembling models with diverse inductive biases [3.885174353072695]
化学合成の計画と実行は、機能的な小さな分子の発見において大きなボトルネックとなっている。
化学者が反応モデルを構築するためのフレームワークであるChimeraを提案する。
論文 参考訳(メタデータ) (2024-12-06T18:55:19Z) - Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
RAlignは、様々な有機反応関連タスクのための新しい化学反応表現学習モデルである。
反応物質と生成物との原子対応を統合することにより、反応中に起こる分子変換を識別する。
モデルが重要な機能群に集中できるように,反応中心認識型アテンション機構を導入する。
論文 参考訳(メタデータ) (2024-11-26T17:41:44Z) - log-RRIM: Yield Prediction via Local-to-global Reaction Representation Learning and Interaction Modeling [6.310759215182946]
log-RRIMは、化学反応の収量を予測するために設計された革新的なグラフトランスフォーマーベースのフレームワークである。
本手法は,一意の局所的-グローバル的反応表現学習戦略を実装している。
反応剤-試薬相互作用の高度なモデリングと小さな分子断片への感受性により、化学合成における反応計画と最適化のための貴重なツールとなる。
論文 参考訳(メタデータ) (2024-10-20T18:35:56Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chemは150億のパラメータを持つ大規模な言語モデルであり、再合成予測の強化に最適化されている。
我々のモデルは幅広い化学知識を捉え、反応条件の正確な予測を可能にする。
この開発により、化学者は新しい化合物を十分に扱うことができ、医薬品製造と材料科学の革新サイクルを早める可能性がある。
論文 参考訳(メタデータ) (2024-08-19T05:17:40Z) - YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
伝統的な手法は複雑な分子構造を見逃し、不正確な結果をもたらすことが多い。
本稿では,グラフ畳み込みネットワーク(GCN),トランスフォーマーアーキテクチャ,Long Short-Term Memory(LSTM)ネットワークを統合するディープラーニングフレームワークであるYZS-Modelを紹介する。
YZS-Modelは、R2$ 0.59、RMSE$ 0.57を達成し、ベンチマークモデルを上回った。
論文 参考訳(メタデータ) (2024-06-27T12:40:29Z) - Contextual Molecule Representation Learning from Chemical Reaction
Knowledge [24.501564702095937]
本稿では,共通化学における原子結合規則をうまく利用した自己教師型学習フレームワークREMOを紹介する。
REMOは、文献における170万の既知の化学反応に関するグラフ/トランスフォーマーエンコーダを事前訓練する。
論文 参考訳(メタデータ) (2024-02-21T12:58:40Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
RetroWISEは,実データから推定されるベースモデルを用いて,シリコン内反応の生成と増大を行うフレームワークである。
3つのベンチマークデータセットで、RetroWISEは最先端モデルに対して最高の全体的なパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-01-31T07:40:37Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - ReactIE: Enhancing Chemical Reaction Extraction with Weak Supervision [27.850325653751078]
構造化化学反応情報は、実験とコンピュータ支援医薬品設計のような先進的な取り組みに携わる化学者にとって重要な役割を担っている。
科学的文献から構造的反応を抽出することが重要であるにもかかわらず、この目的のためのデータアノテーションは、ドメインの専門家が必要とする多大な労力のためにコストを抑えることができる。
本稿では,2つの弱教師付き事前学習手法を組み合わせたReactIEを提案する。本手法では,テキスト内の頻繁なパターンを言語的手がかりとして用いて,化学反応の特異な特性を同定する。
論文 参考訳(メタデータ) (2023-07-04T02:52:30Z) - Unassisted Noise Reduction of Chemical Reaction Data Sets [59.127921057012564]
本稿では,データセットから化学的に間違ったエントリを除去するための,機械学習に基づく無支援アプローチを提案する。
その結果,クリーン化およびバランスの取れたデータセットでトレーニングしたモデルの予測精度が向上した。
論文 参考訳(メタデータ) (2021-02-02T09:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。