A New Hybrid Intelligent Approach for Multimodal Detection of Suspected Disinformation on TikTok
- URL: http://arxiv.org/abs/2502.06893v1
- Date: Sun, 09 Feb 2025 12:37:48 GMT
- Title: A New Hybrid Intelligent Approach for Multimodal Detection of Suspected Disinformation on TikTok
- Authors: Jared D. T. Guerrero-Sosa, Andres Montoro-Montarroso, Francisco P. Romero, Jesus Serrano-Guerrero, Jose A. Olivas,
- Abstract summary: This study introduces a hybrid framework that combines the computational power of deep learning with the interpretability of fuzzy logic to detect suspected disinformation in TikTok videos.
The methodology is comprised of two core components: a multimodal feature analyser that extracts and evaluates data from text, audio, and video; and a multimodal disinformation detector based on fuzzy logic.
- Score: 0.0
- License:
- Abstract: In the context of the rapid dissemination of multimedia content, identifying disinformation on social media platforms such as TikTok represents a significant challenge. This study introduces a hybrid framework that combines the computational power of deep learning with the interpretability of fuzzy logic to detect suspected disinformation in TikTok videos. The methodology is comprised of two core components: a multimodal feature analyser that extracts and evaluates data from text, audio, and video; and a multimodal disinformation detector based on fuzzy logic. These systems operate in conjunction to evaluate the suspicion of spreading disinformation, drawing on human behavioural cues such as body language, speech patterns, and text coherence. Two experiments were conducted: one focusing on context-specific disinformation and the other on the scalability of the model across broader topics. For each video evaluated, high-quality, comprehensive, well-structured reports are generated, providing a detailed view of the disinformation behaviours.
Related papers
- Multi-Modal interpretable automatic video captioning [1.9874264019909988]
We introduce a novel video captioning method trained with multi-modal contrastive loss.
Our approach is designed to capture the dependency between these modalities, resulting in more accurate, thus pertinent captions.
arXiv Detail & Related papers (2024-11-11T11:12:23Z) - Knowledge-Aware Reasoning over Multimodal Semi-structured Tables [85.24395216111462]
This study investigates whether current AI models can perform knowledge-aware reasoning on multimodal structured data.
We introduce MMTabQA, a new dataset designed for this purpose.
Our experiments highlight substantial challenges for current AI models in effectively integrating and interpreting multiple text and image inputs.
arXiv Detail & Related papers (2024-08-25T15:17:43Z) - Detecting Misinformation in Multimedia Content through Cross-Modal Entity Consistency: A Dual Learning Approach [10.376378437321437]
We propose a Multimedia Misinformation Detection framework for detecting misinformation from video content by leveraging cross-modal entity consistency.
Our results demonstrate that MultiMD outperforms state-of-the-art baseline models.
arXiv Detail & Related papers (2024-08-16T16:14:36Z) - Detecting and Grounding Multi-Modal Media Manipulation and Beyond [93.08116982163804]
We highlight a new research problem for multi-modal fake media, namely Detecting and Grounding Multi-Modal Media Manipulation (DGM4)
DGM4 aims to not only detect the authenticity of multi-modal media, but also ground the manipulated content.
We propose a novel HierArchical Multi-modal Manipulation rEasoning tRansformer (HAMMER) to fully capture the fine-grained interaction between different modalities.
arXiv Detail & Related papers (2023-09-25T15:05:46Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
We introduce a novel research problem of contextual object detection.
Three representative scenarios are investigated, including the language cloze test, visual captioning, and question answering.
We present ContextDET, a unified multimodal model that is capable of end-to-end differentiable modeling of visual-language contexts.
arXiv Detail & Related papers (2023-05-29T17:50:33Z) - Information Screening whilst Exploiting! Multimodal Relation Extraction
with Feature Denoising and Multimodal Topic Modeling [96.75821232222201]
Existing research on multimodal relation extraction (MRE) faces two co-existing challenges, internal-information over-utilization and external-information under-exploitation.
We propose a novel framework that simultaneously implements the idea of internal-information screening and external-information exploiting.
arXiv Detail & Related papers (2023-05-19T14:56:57Z) - Interpretable Multimodal Misinformation Detection with Logic Reasoning [40.851213962307206]
We propose a novel logic-based neural model for multimodal misinformation detection.
We parameterize symbolic logical elements using neural representations, which facilitate the automatic generation and evaluation of meaningful logic clauses.
Results on three public datasets demonstrate the feasibility and versatility of our model.
arXiv Detail & Related papers (2023-05-10T08:16:36Z) - Multimodal Short Video Rumor Detection System Based on Contrastive
Learning [3.4192832062683842]
Short video platforms in China have gradually evolved into fertile grounds for the proliferation of fake news.
distinguishing short video rumors poses a significant challenge due to the substantial amount of information and shared features.
Our research group proposes a methodology encompassing multimodal feature fusion and the integration of external knowledge.
arXiv Detail & Related papers (2023-04-17T16:07:00Z) - Interpretable Detection of Out-of-Context Misinformation with Neural-Symbolic-Enhanced Large Multimodal Model [16.348950072491697]
Misinformation creators now more tend to use out-of- multimedia contents to deceive the public and fake news detection systems.
This new type of misinformation increases the difficulty of not only detection but also clarification, because every individual modality is close enough to true information.
In this paper we explore how to achieve interpretable cross-modal de-contextualization detection that simultaneously identifies the mismatched pairs and the cross-modal contradictions.
arXiv Detail & Related papers (2023-04-15T21:11:55Z) - Understanding ME? Multimodal Evaluation for Fine-grained Visual
Commonsense [98.70218717851665]
It is unclear whether the models really understand the visual scene and underlying commonsense knowledge due to limited evaluation data resources.
We present a Multimodal Evaluation (ME) pipeline to automatically generate question-answer pairs to test models' understanding of the visual scene, text, and related knowledge.
We then take a step further to show that training with the ME data boosts the model's performance in standard VCR evaluation.
arXiv Detail & Related papers (2022-11-10T21:44:33Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
multimodal machine learning that incorporates data from various sources has become an increasingly popular research area.
We analyze the commonness and uniqueness of each data format mainly ranging from vision, audio, text, and motions.
We investigate the existing literature on multimodal learning from both the representation learning and downstream application levels.
arXiv Detail & Related papers (2022-10-05T13:14:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.