論文の概要: Large Language Models for In-File Vulnerability Localization Can Be "Lost in the End"
- arxiv url: http://arxiv.org/abs/2502.06898v1
- Date: Sun, 09 Feb 2025 14:51:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:10:27.862242
- Title: Large Language Models for In-File Vulnerability Localization Can Be "Lost in the End"
- Title(参考訳): ファイル内脆弱性ローカライゼーションのための大規模言語モデルが"終りのロスト"になり得る
- Authors: Francesco Sovrano, Adam Bauer, Alberto Bacchelli,
- Abstract要約: 新しい開発手法では、研究者はLLMが大規模なファイルサイズの入力を効果的に分析できるかどうかを調べる必要がある。
本稿では,GPTモデルを含む,最先端のチャットベースのLLMがファイル内脆弱性の検出に有効であることを示す。
- 参考スコア(独自算出の注目度): 6.6389862916575275
- License:
- Abstract: Recent advancements in artificial intelligence have enabled processing of larger inputs, leading everyday software developers to increasingly rely on chat-based large language models (LLMs) like GPT-3.5 and GPT-4 to detect vulnerabilities across entire files, not just within functions. This new development practice requires researchers to urgently investigate whether commonly used LLMs can effectively analyze large file-sized inputs, in order to provide timely insights for software developers and engineers about the pros and cons of this emerging technological trend. Hence, the goal of this paper is to evaluate the effectiveness of several state-of-the-art chat-based LLMs, including the GPT models, in detecting in-file vulnerabilities. We conducted a costly investigation into how the performance of LLMs varies based on vulnerability type, input size, and vulnerability location within the file. To give enough statistical power to our study, we could only focus on the three most common (as well as dangerous) vulnerabilities: XSS, SQL injection, and path traversal. Our findings indicate that the effectiveness of LLMs in detecting these vulnerabilities is strongly influenced by both the location of the vulnerability and the overall size of the input. Specifically, regardless of the vulnerability type, LLMs tend to significantly (p < .05) underperform when detecting vulnerabilities located toward the end of larger files, a pattern we call the 'lost-in-the-end' effect. Finally, to further support software developers and practitioners, we also explored the optimal input size for these LLMs and presented a simple strategy for identifying it, which can be applied to other models and vulnerability types. Eventually, we show how adjusting the input size can lead to significant improvements in LLM-based vulnerability detection, with an average recall increase of over 37% across all models.
- Abstract(参考訳): 人工知能の最近の進歩により、より大きな入力の処理が可能となり、日々のソフトウェア開発者は、機能内だけでなくファイル全体の脆弱性を検出するために、GPT-3.5やGPT-4のようなチャットベースの大規模言語モデル(LLM)にますます依存するようになった。
この新たな開発プラクティスでは、ソフトウェア開発者やエンジニアに、この新興技術トレンドの長所と短所についてタイムリーな洞察を提供するために、一般的に使われているLLMが、大規模なファイルサイズのインプットを効果的に分析できるかどうかを、研究者が緊急に調査する必要がある。
そこで本論文の目的は,GPTモデルを含む,最先端のチャットベースLLMのファイル内脆弱性検出における有効性を評価することである。
我々は、ファイル内の脆弱性タイプ、入力サイズ、脆弱性位置に基づいて、LCMの性能がどのように異なるか、コストがかかる調査を行った。
私たちの研究に十分な統計力を与えるためには、XSS、SQLインジェクション、パストラバーサルという、最も一般的な(そして危険な)脆弱性にのみ焦点を当てることができました。
これらの脆弱性の検出におけるLSMの有効性は,脆弱性の位置と入力の全体的なサイズの両方に強く影響している。
特に、脆弱性の種類にかかわらず、LLMはより大きなファイルの端に位置する脆弱性を検知する際、著しく(p < .05)性能が低下する傾向にある。
最後に、ソフトウェア開発者や実践者を支援するため、これらのLSMの最適入力サイズについても検討し、それを識別するための簡単な戦略を提示し、他のモデルや脆弱性タイプに適用できることを示した。
最終的に、入力サイズを調整することで、LLMベースの脆弱性検出が大幅に改善され、各モデルの平均リコール率は37%以上になることを示す。
関連論文リスト
- LLMs in Software Security: A Survey of Vulnerability Detection Techniques and Insights [12.424610893030353]
大規模言語モデル(LLM)は、ソフトウェア脆弱性検出のためのトランスフォーメーションツールとして登場している。
本稿では,脆弱性検出におけるLSMの詳細な調査を行う。
言語間の脆弱性検出、マルチモーダルデータ統合、リポジトリレベルの分析といった課題に対処する。
論文 参考訳(メタデータ) (2025-02-10T21:33:38Z) - Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
テスト時間計算による自動ジェイルブレイクに対する逆推論手法を開発した。
我々のアプローチは、LSMの脆弱性を理解するための新しいパラダイムを導入し、より堅牢で信頼性の高いAIシステムの開発の基礎を築いた。
論文 参考訳(メタデータ) (2025-02-03T18:59:01Z) - Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
本稿では,対戦型LDMをジェイルブレイク能力に富んだ反復的自己調整プロセスであるADV-LLMを紹介する。
我々のフレームワークは,様々なオープンソース LLM 上で ASR を100% 近く達成しながら,逆接接尾辞を生成する計算コストを大幅に削減する。
Llama3のみに最適化されているにもかかわらず、GPT-3.5では99%のASR、GPT-4では49%のASRを達成している。
論文 参考訳(メタデータ) (2024-10-24T06:36:12Z) - Outside the Comfort Zone: Analysing LLM Capabilities in Software Vulnerability Detection [9.652886240532741]
本稿では,ソースコードの脆弱性検出における大規模言語モデルの機能について,徹底的に解析する。
我々は6つの汎用LCMに対して脆弱性検出を特別に訓練した6つのオープンソースモデルの性能を評価する。
論文 参考訳(メタデータ) (2024-08-29T10:00:57Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
大規模言語モデル(LLM)は、様々な領域において可能性を示しているが、脆弱性のローカライゼーションにおけるその有効性は未解明のままである。
本調査では,ChatGPTや各種オープンソースモデルなど,コード解析に適した10以上のLLMを対象とする。
ゼロショット学習,ワンショット学習,識別的微調整,生成的微調整の4つのパラダイムを用いて,これらのLCMの有効性を検討する。
論文 参考訳(メタデータ) (2024-03-30T08:42:10Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
包括的な脆弱性ベンチマークであるVulBenchを紹介します。
このベンチマークは、幅広いCTF課題と実世界のアプリケーションから高品質なデータを集約する。
いくつかのLSMは、脆弱性検出における従来のディープラーニングアプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-21T08:20:39Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
5つの異なるセキュリティデータセットから5,000のコードサンプルに対して、16の事前学習された大規模言語モデルの有効性を評価する。
全体として、LSMは脆弱性の検出において最も穏やかな効果を示し、データセットの平均精度は62.8%、F1スコアは0.71である。
ステップバイステップ分析を含む高度なプロンプト戦略は、F1スコア(平均0.18まで)で実世界のデータセット上でのLLMのパフォーマンスを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-11-16T13:17:20Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
本稿では,大規模な言語モデルにおけるセーフガードを評価するための,最初のオープンソースデータセットを収集する。
我々は、自動安全性評価において、GPT-4に匹敵する結果を得るために、BERTライクな分類器をいくつか訓練する。
論文 参考訳(メタデータ) (2023-08-25T14:02:12Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。