論文の概要: Enabling Autoregressive Models to Fill In Masked Tokens
- arxiv url: http://arxiv.org/abs/2502.06901v1
- Date: Sun, 09 Feb 2025 20:02:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:10:43.533859
- Title: Enabling Autoregressive Models to Fill In Masked Tokens
- Title(参考訳): オートレグレッシブ・モデルによるマスクド・トークンの補充
- Authors: Daniel Israel, Aditya Grover, Guy Van den Broeck,
- Abstract要約: MARIA(Masked and Autoregressive Infilling Architecture)は、最先端のマスキング・インフィル・パフォーマンスを実現する新しいアプローチである。
MARIAは、トレーニング済みとARモデルを組み合わせて、隠れた状態を入力として取り込む線形デコーダをトレーニングする。
以上の結果から,MARIAはマスク入力タスクにおいて既存の手法,すなわち離散拡散モデルよりも有意に優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 50.9948753314669
- License:
- Abstract: Historically, LLMs have been trained using either autoregressive (AR) or masked language modeling (MLM) objectives, with AR models gaining dominance in recent years. However, AR models are inherently incapable of masked infilling, which is the ability to predict masked tokens between past and future context. In contrast, MLM models suffer from intrinsic computational inefficiencies during both training and inference that hinder their scalability. This work introduces MARIA (Masked and Autoregressive Infilling Architecture), a novel approach that leverages the strengths of both paradigms to achieve state-of-the-art masked infilling performance. MARIA combines a pre-trained MLM and AR model by training a linear decoder that takes their concatenated hidden states as input. This minimal modification enables the AR model to perform infilling while retaining its inherent advantages in terms of faster inference with KV caching. Our results demonstrate that MARIA significantly outperforms existing methods, namely discrete diffusion models, on masked infilling tasks.
- Abstract(参考訳): 歴史的に、LLMは自己回帰(AR)またはマスキング言語モデリング(MLM)の目的を用いて訓練されてきた。
しかし、ARモデルは本質的に、過去と将来のコンテキストの間のマスク付きトークンを予測する機能であるマスク付きインフィルができない。
対照的に、MLMモデルは、トレーニングと推論の両方において、そのスケーラビリティを妨げる本質的な計算非効率に悩まされている。
MARIA(Masked and Autoregressive Infilling Architecture)は、両方のパラダイムの強みを活用して、最先端のマスク付きインフィルパフォーマンスを実現する新しいアプローチである。
MARIAは、訓練済みのMLMとARモデルを組み合わせて、連結された隠された状態を入力として取り込む線形デコーダをトレーニングする。
この最小限の修正により、KVキャッシュによる推論の高速化の観点から、ARモデルは固有のアドバンテージを維持しながら、インフィルを実行することができる。
以上の結果から,MARIAはマスク入力タスクにおいて既存の手法,すなわち離散拡散モデルよりも有意に優れていたことが示唆された。
関連論文リスト
- Large Language Diffusion Models [77.02553707673418]
自己回帰モデル(ARM)は、大規模言語モデル(LLM)の基盤として広く見なされている。
我々は,事前学習および教師付き微調整パラダイムの下で,ゼロから学習した拡散モデルであるLLaDAを紹介する。
広範なベンチマークを通じて、LLaDAは強力なスケーラビリティを示し、自己構築されたARMベースラインを上回っています。
論文 参考訳(メタデータ) (2025-02-14T08:23:51Z) - Beyond Autoregression: Fast LLMs via Self-Distillation Through Time [1.5858234832499587]
拡散言語モデルでは,テキスト品質およびLAMBADA自然言語理解ベンチマークにおいて,少なくとも32個のトークンを同時に生成できることを示す。
実際には、1.3Bパラメータスケールでは、キャッシュなしでも拡散モデルはKVキャッシュを使用するARモデルよりも最大8倍高速なトークンを生成することができる。
論文 参考訳(メタデータ) (2024-10-28T13:56:30Z) - Scaling Diffusion Language Models via Adaptation from Autoregressive Models [105.70889434492143]
拡散言語モデル(DLM)は、テキスト生成モデルのための将来性のある新しいパラダイムとして登場した。
170Mから7BまでのARモデルをDiffuGPTとDiffuLLaMAの拡散モデルに変換し、200B未満のトークンでトレーニングできることを示す。
実験の結果,これらのモデルは初期のDLMよりも優れており,ARと競合していることがわかった。
論文 参考訳(メタデータ) (2024-10-23T14:04:22Z) - LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding [30.630803933771865]
実験により,提案手法が投機的復号化よりも大幅に高速化されたことを示す。
LANTERNは、greedyデコーディングやランダムサンプリングと比較して、$mathbf1.75times$と$mathbf1.82times$のスピードアップを増大させる。
論文 参考訳(メタデータ) (2024-10-04T12:21:03Z) - Emerging Property of Masked Token for Effective Pre-training [15.846621577804791]
Masked Image Modeling (MIM)はコンピュータビジョンにおける最近のブレークスルーの推進に役立っている。
MIMの全体的な効率は、トレーニング前のフェーズの長い持続時間によって妨げられることがある。
本稿では,マスクトークンの重み付けとキー特性の強化によるモデル効率の向上を目的として,マスクトークン最適化(MTO)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-12T08:46:53Z) - Masked Autoencoding for Scalable and Generalizable Decision Making [93.84855114717062]
MaskDPは、強化学習と行動クローンのためのシンプルでスケーラブルな自己教師付き事前学習手法である。
我々は,MaskDPモデルにより,単一ゴールや複数ゴール到達といった新しいBCタスクへのゼロショット転送能力が得られることを発見した。
論文 参考訳(メタデータ) (2022-11-23T07:04:41Z) - Scaling Hidden Markov Language Models [118.55908381553056]
この研究は、HMMを言語モデリングデータセットに拡張するという課題を再考する。
本研究では,HMMを大規模状態空間に拡張する手法を提案する。
論文 参考訳(メタデータ) (2020-11-09T18:51:55Z) - Semi-Autoregressive Training Improves Mask-Predict Decoding [119.8412758943192]
本研究では,マスク予測の半自己回帰動作を模倣した条件付きマスキング言語モデルSMARTを提案する。
SMARTでトレーニングされたモデルは、マスク予測デコードを使用すると高品質な変換を生成し、完全な自己回帰モデルで残りの性能ギャップを効果的に閉じる。
論文 参考訳(メタデータ) (2020-01-23T19:56:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。