論文の概要: Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models
- arxiv url: http://arxiv.org/abs/2502.06999v1
- Date: Mon, 10 Feb 2025 19:49:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:07:07.260826
- Title: Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models
- Title(参考訳): アウトソース拡散サンプリング:生成モデルの潜在空間における効率的な後部推論
- Authors: Siddarth Venkatraman, Mohsin Hasan, Minsu Kim, Luca Scimeca, Marcin Sendera, Yoshua Bengio, Glen Berseth, Nikolay Malkin,
- Abstract要約: 本稿では、$p(mathbfxmidmathbfy) propto p_theta(mathbfx)$ という形式の後続分布からサンプリングするコストを償却する。
多くのモデルと関心の制約に対して、ノイズ空間の後方はデータ空間の後方よりも滑らかであり、そのような償却推論に対してより快適である。
- 参考スコア(独自算出の注目度): 65.71506381302815
- License:
- Abstract: Any well-behaved generative model over a variable $\mathbf{x}$ can be expressed as a deterministic transformation of an exogenous ('outsourced') Gaussian noise variable $\mathbf{z}$: $\mathbf{x}=f_\theta(\mathbf{z})$. In such a model (e.g., a VAE, GAN, or continuous-time flow-based model), sampling of the target variable $\mathbf{x} \sim p_\theta(\mathbf{x})$ is straightforward, but sampling from a posterior distribution of the form $p(\mathbf{x}\mid\mathbf{y}) \propto p_\theta(\mathbf{x})r(\mathbf{x},\mathbf{y})$, where $r$ is a constraint function depending on an auxiliary variable $\mathbf{y}$, is generally intractable. We propose to amortize the cost of sampling from such posterior distributions with diffusion models that sample a distribution in the noise space ($\mathbf{z}$). These diffusion samplers are trained by reinforcement learning algorithms to enforce that the transformed samples $f_\theta(\mathbf{z})$ are distributed according to the posterior in the data space ($\mathbf{x}$). For many models and constraints of interest, the posterior in the noise space is smoother than the posterior in the data space, making it more amenable to such amortized inference. Our method enables conditional sampling under unconditional GAN, (H)VAE, and flow-based priors, comparing favorably both with current amortized and non-amortized inference methods. We demonstrate the proposed outsourced diffusion sampling in several experiments with large pretrained prior models: conditional image generation, reinforcement learning with human feedback, and protein structure generation.
- Abstract(参考訳): 変数 $\mathbf{x}$ 上の良好な生成モデルは、外生的('outsourced')ガウス雑音変数 $\mathbf{z}$: $\mathbf{x}=f_\theta(\mathbf{z})$ の決定論的変換として表すことができる。
そのようなモデル (e g , a VAE, GAN, or continuous-time flow-based model) では、対象変数 $\mathbf{x} \sim p_\theta(\mathbf{x})$ のサンプリングは単純であるが、形式 $p(\mathbf{x}\mid\mathbf{y}) \propto p_\theta(\mathbf{x})r(\mathbf{x},\mathbf{y})$ の後方分布からサンプリングする。
本稿では,ノイズ空間(\mathbf{z}$)の分布をサンプリングする拡散モデルを用いて,そのような後部分布からサンプリングするコストを補正する。
これらの拡散サンプリングは強化学習アルゴリズムによって訓練され、変換されたサンプル$f_\theta(\mathbf{z})$がデータ空間の後方に応じて分配される(\mathbf{x}$)。
多くのモデルと関心の制約に対して、ノイズ空間の後方はデータ空間の後方よりも滑らかであり、そのような償却推論に対してより快適である。
本手法は,非条件付きGAN,(H)VAE,フローベース事前条件下での条件付きサンプリングを可能にする。
本研究では, 条件付き画像生成, 人間のフィードバックによる強化学習, タンパク質構造生成など, 事前訓練済みの大規模モデルを用いて, アウトソース拡散サンプリングを行った。
関連論文リスト
- Variable Selection in Convex Piecewise Linear Regression [5.366354612549172]
本稿では,凸片方向線形回帰における変数選択の解としてスパース勾配を提案する。
亜ガウス雑音下でのSpGDには非漸近局所収束解析が提供される。
論文 参考訳(メタデータ) (2024-11-04T16:19:09Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
本稿では,p(mathbfx)$以前の拡散生成モデルとブラックボックス制約,あるいは関数$r(mathbfx)$からなるモデルにおいて,データ上の後部サンプルである $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$について検討する。
我々は,データフリー学習目標である相対軌道バランスの正しさを,サンプルから抽出した拡散モデルの訓練のために証明する。
論文 参考訳(メタデータ) (2024-05-31T16:18:46Z) - Minimax Optimality of Score-based Diffusion Models: Beyond the Density Lower Bound Assumptions [11.222970035173372]
カーネルベースのスコア推定器は$widetildeOleft(n-1 t-fracd+22(tfracd2 vee 1)rightの最適平均二乗誤差を達成する
核を用いたスコア推定器は,拡散モデルで生成した試料の分布の総変動誤差に対して,極小ガウスの下での最大平均2乗誤差を$widetildeOleft(n-1/2 t-fracd4right)$上界で達成することを示す。
論文 参考訳(メタデータ) (2024-02-23T20:51:31Z) - Consistency Model is an Effective Posterior Sample Approximation for Diffusion Inverse Solvers [28.678613691787096]
過去の近似は後続の手段に依存しており、画像分布の支持には当てはまらない可能性がある。
本稿では,画像分布支援において有効なサンプルを生成することを保証する,後部近似のための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-09T02:23:47Z) - Nearly $d$-Linear Convergence Bounds for Diffusion Models via Stochastic
Localization [40.808942894229325]
データ次元において線形である第1収束境界を提供する。
拡散モデルは任意の分布を近似するために少なくとも$tilde O(fracd log2(1/delta)varepsilon2)$ stepsを必要とすることを示す。
論文 参考訳(メタデータ) (2023-08-07T16:01:14Z) - Statistical Learning under Heterogeneous Distribution Shift [71.8393170225794]
ground-truth predictor is additive $mathbbE[mathbfz mid mathbfx,mathbfy] = f_star(mathbfx) +g_star(mathbfy)$.
論文 参考訳(メタデータ) (2023-02-27T16:34:21Z) - Diffusion models as plug-and-play priors [98.16404662526101]
我々は、事前の$p(mathbfx)$と補助的な制約である$c(mathbfx,mathbfy)$からなるモデルにおいて、高次元データ$mathbfx$を推論する問題を考える。
拡散モデルの構造は,異なるノイズ量に富んだ定性デノナイジングネットワークを通じて,微分を反復することで近似推論を行うことができる。
論文 参考訳(メタデータ) (2022-06-17T21:11:36Z) - Multimeasurement Generative Models [7.502947376736449]
我々は、密度$p_X$ in $mathbbRd$を未知分布からサンプリングする問題を学習とサンプリングの問題を$p_mathbfY$ in $mathbbRMd$とする。
論文 参考訳(メタデータ) (2021-12-18T02:11:36Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
期待される正方形損失から、最も適合した単一ニューロンを学習することの問題点を考察する。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
論文 参考訳(メタデータ) (2020-05-29T07:20:35Z) - Neural Bayes: A Generic Parameterization Method for Unsupervised
Representation Learning [175.34232468746245]
本稿ではニューラルベイズと呼ばれるパラメータ化手法を提案する。
これは一般に計算が難しい統計量の計算を可能にする。
このパラメータ化のための2つの独立したユースケースを示す。
論文 参考訳(メタデータ) (2020-02-20T22:28:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。