論文の概要: Minimax Optimality of Score-based Diffusion Models: Beyond the Density Lower Bound Assumptions
- arxiv url: http://arxiv.org/abs/2402.15602v2
- Date: Tue, 23 Jul 2024 15:00:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 22:53:21.604577
- Title: Minimax Optimality of Score-based Diffusion Models: Beyond the Density Lower Bound Assumptions
- Title(参考訳): スコアベース拡散モデルのミニマックス最適性:密度下界推定を超えて
- Authors: Kaihong Zhang, Caitlyn H. Yin, Feng Liang, Jingbo Liu,
- Abstract要約: カーネルベースのスコア推定器は$widetildeOleft(n-1 t-fracd+22(tfracd2 vee 1)rightの最適平均二乗誤差を達成する
核を用いたスコア推定器は,拡散モデルで生成した試料の分布の総変動誤差に対して,極小ガウスの下での最大平均2乗誤差を$widetildeOleft(n-1/2 t-fracd4right)$上界で達成することを示す。
- 参考スコア(独自算出の注目度): 11.222970035173372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the asymptotic error of score-based diffusion model sampling in large-sample scenarios from a non-parametric statistics perspective. We show that a kernel-based score estimator achieves an optimal mean square error of $\widetilde{O}\left(n^{-1} t^{-\frac{d+2}{2}}(t^{\frac{d}{2}} \vee 1)\right)$ for the score function of $p_0*\mathcal{N}(0,t\boldsymbol{I}_d)$, where $n$ and $d$ represent the sample size and the dimension, $t$ is bounded above and below by polynomials of $n$, and $p_0$ is an arbitrary sub-Gaussian distribution. As a consequence, this yields an $\widetilde{O}\left(n^{-1/2} t^{-\frac{d}{4}}\right)$ upper bound for the total variation error of the distribution of the sample generated by the diffusion model under a mere sub-Gaussian assumption. If in addition, $p_0$ belongs to the nonparametric family of the $\beta$-Sobolev space with $\beta\le 2$, by adopting an early stopping strategy, we obtain that the diffusion model is nearly (up to log factors) minimax optimal. This removes the crucial lower bound assumption on $p_0$ in previous proofs of the minimax optimality of the diffusion model for nonparametric families.
- Abstract(参考訳): 非パラメトリック統計の観点から,大規模シナリオにおけるスコアベース拡散モデルサンプリングの漸近誤差について検討した。
カーネルベースのスコア推定器が最適平均二乗誤差を$\widetilde{O}\left(n^{-1} t^{-\frac{d+2}{2}}(t^{\frac{d}{2}} \vee 1)\right)$ for the score function of $p_0*\mathcal{N}(0,t\boldsymbol{I}_d)$。
その結果、拡散モデルによって生成されたサンプルの分布の総変分誤差に対する$\widetilde{O}\left(n^{-1/2} t^{-\frac{d}{4}}\right)$上界が得られる。
さらに、$p_0$ が $\beta$-Sobolev 空間の非パラメトリック族に属し、$\beta\le 2$ が早期停止戦略を採用することにより、拡散モデルはほぼ(対数因子まで)最小値であることがわかる。
これにより、非パラメトリック族に対する拡散モデルのミニマックス最適性の以前の証明において、$p_0$に対する決定的な下界仮定が取り除かれる。
関連論文リスト
- Variable Selection in Convex Piecewise Linear Regression [5.366354612549172]
本稿では,凸片方向線形回帰における変数選択の解としてスパース勾配を提案する。
亜ガウス雑音下でのSpGDには非漸近局所収束解析が提供される。
論文 参考訳(メタデータ) (2024-11-04T16:19:09Z) - Optimal score estimation via empirical Bayes smoothing [13.685846094715364]
未知確率分布$rho*$のスコア関数を$n$独立分布および$d$次元における同一分布観測から推定する問題について検討する。
ガウスカーネルに基づく正規化スコア推定器は、一致するミニマックス下界によって最適に示され、この値が得られることを示す。
論文 参考訳(メタデータ) (2024-02-12T16:17:40Z) - Debiasing and a local analysis for population clustering using
semidefinite programming [1.9761774213809036]
サブガウス分布の混合から引き出された小さいデータサンプルを$n$で分割する問題を考察する。
この研究は、起源の個体数に応じた集団化の応用によって動機付けられている。
論文 参考訳(メタデータ) (2024-01-16T03:14:24Z) - $L^1$ Estimation: On the Optimality of Linear Estimators [64.76492306585168]
この研究は、条件中央値の線型性を誘導する$X$上の唯一の先行分布がガウス分布であることを示している。
特に、条件分布 $P_X|Y=y$ がすべての$y$に対して対称であるなら、$X$ はガウス分布に従う必要がある。
論文 参考訳(メタデータ) (2023-09-17T01:45:13Z) - Nearly $d$-Linear Convergence Bounds for Diffusion Models via Stochastic
Localization [40.808942894229325]
データ次元において線形である第1収束境界を提供する。
拡散モデルは任意の分布を近似するために少なくとも$tilde O(fracd log2(1/delta)varepsilon2)$ stepsを必要とすることを示す。
論文 参考訳(メタデータ) (2023-08-07T16:01:14Z) - Stochastic Approximation Approaches to Group Distributionally Robust
Optimization [96.26317627118912]
群分散ロバスト最適化(GDRO)
オンライン学習技術は、各ラウンドに必要なサンプル数をm$から1$に減らし、同じサンプルを保持する。
分布依存収束率を導出できる重み付きGDROの新規な定式化。
論文 参考訳(メタデータ) (2023-02-18T09:24:15Z) - Sample-Efficient Reinforcement Learning for Linearly-Parameterized MDPs
with a Generative Model [3.749193647980305]
本稿では,一連の状態対応機能を有するマルコフ決定プロセス(MDP)について考察する。
モデルに基づくアプローチ(resp.$Q-learning)が、高い確率で$varepsilon$-Optimalポリシーを確実に学習することを示す。
論文 参考訳(メタデータ) (2021-05-28T17:49:39Z) - The Sample Complexity of Robust Covariance Testing [56.98280399449707]
i. i. d.
形式 $Z = (1-epsilon) X + epsilon B$ の分布からのサンプル。ここで $X$ はゼロ平均で未知の共分散である Gaussian $mathcalN(0, Sigma)$ である。
汚染がない場合、事前の研究は、$O(d)$サンプルを使用するこの仮説テストタスクの単純なテスターを与えた。
サンプル複雑性の上限が $omega(d2)$ for $epsilon$ an arbitrarily small constant and $gamma であることを証明します。
論文 参考訳(メタデータ) (2020-12-31T18:24:41Z) - Sparse sketches with small inversion bias [79.77110958547695]
逆バイアスは、逆の共分散に依存する量の推定を平均化するときに生じる。
本研究では、確率行列に対する$(epsilon,delta)$-unbiased estimatorという概念に基づいて、逆バイアスを解析するためのフレームワークを開発する。
スケッチ行列 $S$ が密度が高く、すなわちサブガウスのエントリを持つとき、$(epsilon,delta)$-unbiased for $(Atop A)-1$ は $m=O(d+sqrt d/ のスケッチを持つ。
論文 参考訳(メタデータ) (2020-11-21T01:33:15Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
期待される正方形損失から、最も適合した単一ニューロンを学習することの問題点を考察する。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
論文 参考訳(メタデータ) (2020-05-29T07:20:35Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
我々は、他の攻撃モデルに対してスムースな手法を拡張することは困難であることを示す。
我々はCIFARに関する実験結果を示し,その理論を検証した。
論文 参考訳(メタデータ) (2020-02-08T22:02:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。