論文の概要: DROP: Poison Dilution via Knowledge Distillation for Federated Learning
- arxiv url: http://arxiv.org/abs/2502.07011v1
- Date: Mon, 10 Feb 2025 20:15:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:07:58.355084
- Title: DROP: Poison Dilution via Knowledge Distillation for Federated Learning
- Title(参考訳): DROP:フェデレーション学習のための知識蒸留による毒素の希釈
- Authors: Georgios Syros, Anshuman Suri, Farinaz Koushanfar, Cristina Nita-Rotaru, Alina Oprea,
- Abstract要約: フェデレートラーニングは、悪意のあるクライアントが悪意のあるアップデートを注入して、グローバルモデルの振る舞いに影響を与える、敵の操作に対して脆弱である。
本稿では,クラスタリングとアクティビティ追跡技術を組み合わせた新しい防御機構DROPと,クライアントからの良質な振る舞いの抽出について紹介する。
提案手法は,幅広い学習環境における既存の防御法と比較して,優れたロバスト性を示す。
- 参考スコア(独自算出の注目度): 23.793474308133003
- License:
- Abstract: Federated Learning is vulnerable to adversarial manipulation, where malicious clients can inject poisoned updates to influence the global model's behavior. While existing defense mechanisms have made notable progress, they fail to protect against adversaries that aim to induce targeted backdoors under different learning and attack configurations. To address this limitation, we introduce DROP (Distillation-based Reduction Of Poisoning), a novel defense mechanism that combines clustering and activity-tracking techniques with extraction of benign behavior from clients via knowledge distillation to tackle stealthy adversaries that manipulate low data poisoning rates and diverse malicious client ratios within the federation. Through extensive experimentation, our approach demonstrates superior robustness compared to existing defenses across a wide range of learning configurations. Finally, we evaluate existing defenses and our method under the challenging setting of non-IID client data distribution and highlight the challenges of designing a resilient FL defense in this setting.
- Abstract(参考訳): フェデレートラーニングは、悪意のあるクライアントが悪意のあるアップデートを注入して、グローバルモデルの振る舞いに影響を与える、敵の操作に対して脆弱である。
既存の防御機構は顕著な進歩を遂げているが、異なる学習と攻撃構成下で標的となるバックドアを誘導することを目的とした敵に対する防御には失敗している。
この制限に対処するために,DROP(Distillation-based Reduction of Poisoning)という,クラスタリングとアクティビティ追跡技術を組み合わせた新しい防御機構を導入する。
大規模な実験を通じて,本手法は,幅広い学習環境における既存の防御法と比較して,優れた堅牢性を示す。
最後に,非IIDクライアントデータ分散の困難な設定下での既存の防御と手法の評価を行い,この設定で回復力のあるFLディフェンスを設計する上での課題を強調した。
関連論文リスト
- Robust Knowledge Distillation in Federated Learning: Counteracting Backdoor Attacks [12.227509826319267]
フェデレートラーニング(FL)は、データのプライバシを保持しながら、複数のデバイス間で協調的なモデルトレーニングを可能にする。
悪意のある参加者が世界モデルに侵入できるバックドア攻撃の影響を受けやすい。
本稿では,制約的仮定に頼らずにモデル整合性を高める新しい防御機構であるロバスト知識蒸留(RKD)を提案する。
論文 参考訳(メタデータ) (2025-02-01T22:57:08Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
Celtiberoは, 対向操作に対する強靭性を高めるため, 層状アグリゲーションを統合した新しい防御機構である。
セルティベロは、標的外および標的標的の毒殺攻撃において、最小攻撃成功率(ASR)を維持しつつ、常に高い主タスク精度(MTA)を達成することを実証した。
論文 参考訳(メタデータ) (2024-08-26T12:54:00Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
マルチモーダルコントラスト学習は高品質な機能を構築するための強力なパラダイムとして登場した。
バックドア攻撃は 訓練中に モデルに 悪意ある行動を埋め込む
我々は,革新的なトークンベースの局所的忘れ忘れ学習システムを導入する。
論文 参考訳(メタデータ) (2024-03-24T18:33:15Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - Adversarial Robustness Unhardening via Backdoor Attacks in Federated
Learning [13.12397828096428]
敵のロバストネス・アンハードニング(ARU)は、分散トレーニング中にモデルロバストネスを意図的に損なうために、敵のサブセットによって使用される。
本研究は,ARUの対人訓練への影響と,中毒やバックドア攻撃に対する既存の堅牢な防御効果を評価する実証実験である。
論文 参考訳(メタデータ) (2023-10-17T21:38:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Denoising Autoencoder-based Defensive Distillation as an Adversarial
Robustness Algorithm [0.0]
敵対的攻撃はディープニューラルネットワーク(DNN)の堅牢性を著しく脅かす
本研究は, 防衛蒸留機構をデノナイジングオートエンコーダ(DAE)と組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-28T11:34:54Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。