論文の概要: Denoising Autoencoder-based Defensive Distillation as an Adversarial
Robustness Algorithm
- arxiv url: http://arxiv.org/abs/2303.15901v1
- Date: Tue, 28 Mar 2023 11:34:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 15:27:43.239799
- Title: Denoising Autoencoder-based Defensive Distillation as an Adversarial
Robustness Algorithm
- Title(参考訳): 対向ロバスト性アルゴリズムとしての自己エンコーダに基づく防御蒸留
- Authors: Bakary Badjie, Jos\'e Cec\'ilio, Ant\'onio Casimiro
- Abstract要約: 敵対的攻撃はディープニューラルネットワーク(DNN)の堅牢性を著しく脅かす
本研究は, 防衛蒸留機構をデノナイジングオートエンコーダ(DAE)と組み合わせた新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks significantly threaten the robustness of deep neural
networks (DNNs). Despite the multiple defensive methods employed, they are
nevertheless vulnerable to poison attacks, where attackers meddle with the
initial training data. In order to defend DNNs against such adversarial
attacks, this work proposes a novel method that combines the defensive
distillation mechanism with a denoising autoencoder (DAE). This technique tries
to lower the sensitivity of the distilled model to poison attacks by spotting
and reconstructing poisonous adversarial inputs in the training data. We added
carefully created adversarial samples to the initial training data to assess
the proposed method's performance. Our experimental findings demonstrate that
our method successfully identified and reconstructed the poisonous inputs while
also considering enhancing the DNN's resilience. The proposed approach provides
a potent and robust defense mechanism for DNNs in various applications where
data poisoning attacks are a concern. Thus, the defensive distillation
technique's limitation posed by poisonous adversarial attacks is overcome.
- Abstract(参考訳): 敵対的攻撃はディープニューラルネットワーク(DNN)の堅牢性を著しく脅かす。
複数の防御手法が採用されているにもかかわらず、攻撃者は初期訓練データに干渉する毒物攻撃に弱い。
このような敵対的攻撃からdnnを防御するために,本研究では,防御蒸留機構と消音オートエンコーダ(dae)を組み合わせた新しい方法を提案する。
本手法は, トレーニングデータに有毒な敵意入力を検出・再構成することにより, 蒸留モデルの中毒攻撃に対する感受性を低下させる。
提案手法の性能を評価するため, 初期訓練データに, 慎重に作成した逆サンプルを付加した。
以上の結果から,本手法はDNNのレジリエンスの向上を考慮しつつ,有毒な入力を同定および再構成することに成功した。
提案手法は、データ中毒攻撃が懸念される様々なアプリケーションにおいて、DNNに対して強力で堅牢な防御メカニズムを提供する。
これにより, 有害な対人攻撃による防衛蒸留技術による限界が克服される。
関連論文リスト
- Detecting Adversarial Examples [24.585379549997743]
本稿では,Deep Neural Networks の層出力を解析して,敵のサンプルを検出する手法を提案する。
提案手法はDNNアーキテクチャと互換性が高く,画像,ビデオ,オーディオなど,さまざまな領域にまたがって適用可能である。
論文 参考訳(メタデータ) (2024-10-22T21:42:59Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
現代のNLPモデルは、様々なソースから引き出された公開データセットでしばしば訓練される。
データ中毒攻撃は、攻撃者が設計した方法でモデルの振る舞いを操作できる。
バックドア攻撃に伴うリスクを軽減するために、いくつかの戦略が提案されている。
論文 参考訳(メタデータ) (2024-05-19T14:50:09Z) - Robust Overfitting Does Matter: Test-Time Adversarial Purification With FGSM [5.592360872268223]
防衛戦略は通常、特定の敵攻撃法のためにディープニューラルネットワーク(DNN)を訓練し、この種の敵攻撃に対する防御において優れた堅牢性を達成することができる。
しかしながら、不慣れな攻撃モダリティに関する評価を受けると、実証的な証拠はDNNの堅牢性の顕著な劣化を示す。
ほとんどの防衛方法は、DNNの敵の堅牢性を改善するために、クリーンな例の精度を犠牲にすることが多い。
論文 参考訳(メタデータ) (2024-03-18T03:54:01Z) - Confidence-driven Sampling for Backdoor Attacks [49.72680157684523]
バックドア攻撃は、悪質なトリガをDNNモデルに過剰に挿入することを目的としており、テストシナリオ中に不正な制御を許可している。
既存の方法では防衛戦略に対する堅牢性が欠如しており、主に無作為な試薬を無作為に選別しながら、引き金の盗難を強化することに重点を置いている。
信頼性スコアの低いサンプルを選別し、これらの攻撃を識別・対処する上で、守備側の課題を著しく増大させる。
論文 参考訳(メタデータ) (2023-10-08T18:57:36Z) - Sharpness-Aware Data Poisoning Attack [38.01535347191942]
最近の研究は、データ中毒攻撃に対するディープニューラルネットワーク(DNN)の脆弱性を強調している。
我々は「SAPA(シャープネス・アウェア・データ・ポジショニング・アタック)」と呼ばれる新たな攻撃方法を提案する。
特に、DNNの損失ランドスケープシャープネスの概念を活用して、最悪の再訓練モデルに対する中毒効果を最適化する。
論文 参考訳(メタデータ) (2023-05-24T08:00:21Z) - Adversarial Camouflage for Node Injection Attack on Graphs [64.5888846198005]
グラフニューラルネットワーク(GNN)に対するノードインジェクション攻撃は、GNNのパフォーマンスを高い攻撃成功率で低下させる能力のため、近年注目を集めている。
本研究は,これらの攻撃が現実的なシナリオでしばしば失敗することを示す。
これを解決するため,我々はカモフラージュノードインジェクション攻撃(camouflage node Injection attack)に取り組んだ。
論文 参考訳(メタデータ) (2022-08-03T02:48:23Z) - Indiscriminate Data Poisoning Attacks on Neural Networks [28.09519873656809]
データ中毒攻撃は、トレーニングプロセスに "poisoned" データを注入することで、モデルに影響を与えることを目的としている。
既存の毒殺攻撃を詳しく調べて、Stackelbergのシーケンシャルゲームを解くための、古いアルゴリズムと新しいアルゴリズムを結びつける。
本稿では,近代的な自動微分パッケージを有効利用し,同時に有毒点を生成するための効率的な実装を提案する。
論文 参考訳(メタデータ) (2022-04-19T18:57:26Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
我々は、共通の敵攻撃を防御する新しい学習フレームワーク、RobustSenseを提案する。
本手法は,無線による人間行動認識と人物識別システムに有効である。
論文 参考訳(メタデータ) (2022-04-04T15:06:03Z) - Searching for an Effective Defender: Benchmarking Defense against
Adversarial Word Substitution [83.84968082791444]
ディープニューラルネットワークは、意図的に構築された敵の例に対して脆弱である。
ニューラルNLPモデルに対する敵対的単語置換攻撃を防御する様々な方法が提案されている。
論文 参考訳(メタデータ) (2021-08-29T08:11:36Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching [56.280018325419896]
Data Poisoning攻撃は、トレーニングデータを変更して、そのようなデータでトレーニングされたモデルを悪意を持って制御する。
我々は「スクラッチから」と「クリーンラベルから」の両方である特に悪意のある毒物攻撃を分析します。
フルサイズで有毒なImageNetデータセットをスクラッチからトレーニングした現代のディープネットワークにおいて、ターゲットの誤分類を引き起こすのは、これが初めてであることを示す。
論文 参考訳(メタデータ) (2020-09-04T16:17:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。